『壹』 解讀 5G 八大關鍵技術
姓名:王珺鋒;學號:20011210172;學院:通信工程學院
原文鏈接:https://zhuanlan.hu.com/p/214055279
【嵌牛導讀】5G技術已經走進我們的生活中,那麼5G技術中有哪些關鍵技術呢?下面這篇文章簡單的介紹了5G中的八大關鍵技術。
【嵌牛鼻子】5G 關鍵技術
【嵌牛提問】相對於4G技術,5G的八大關鍵技術有哪些新的突破?
【嵌牛正文】
1.非正交多址接入技術 (Non-Orthogonal Multiple Access,NOMA)
我們知道 3G 採用直接序列碼分多址(Direct Sequence CDMA ,DS-CDMA)技術,手機接收端使用 Rake 接收器,由於其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)來解決手機和小區之間的遠-近問題。而 4G 網路則採用正交頻分多址(OFDM)技術,OFDM 不但可以克服多徑干擾問題,而且和 MIMO 技術配合,極大的提高了數據速率。由於多用戶正交,手機和小區之間就不存在遠-近問題,快速功率控制就被舍棄,而採用 AMC(自適應編碼)的方法來實現鏈路自適應。NOMA 希望實現的是,重拾 3G 時代的非正交多用戶復用原理,並將之融合於現在的 4G OFDM 技術之中。
從 2G,3G 到 4G,多用戶復用技術無非就是在時域、頻域、碼域上做文章,而NOMA 在 OFDM 的基礎上增加了一個維度——功率域。新增這個功率域的目的是,利用每個用戶不同的路徑損耗來實現多用戶復用。實現多用戶在功率域的復用,需要在接收端加裝一個 SIC(持續干擾消除),通過這個干擾消除器,加上信道編碼(如 Turbo code 或低密度奇偶校驗碼(LDPC)等),就可以在接收端區分出不同用戶的信號。
NOMA 可以利用不同的路徑損耗的差異來對多路發射信號進行疊加,從而提高信號增益。它能夠讓同一小區覆蓋范圍的所有移動設備都能獲得最大的可接入帶寬,可以解決由於大規模連接帶來的網路挑戰。NOMA 的另一優點是,無需知道每個信道的 CSI(信道狀態信息),從而有望在高速移動場景下獲得更好的性能,並能組建更好的移動節點回程鏈路。
2. FBMC(濾波組多載波技術)
在 OFDM 系統中,各個子載波在時域相互正交,它們的頻譜相互重疊,因而具有較高的頻譜利用率。OFDM 技術一般應用在無線系統的數據傳輸中,在 OFDM系統中,由於無線信道的多徑效應,從而使符號間產生干擾。為了消除符號問干擾(ISl),在符號間插入保護間隔。插入保護間隔的一般方法是符號間置零,即發送第一個符號後停留一段時間(不發送任何信息),接下來再發送第二個符號。在 OFDM系統中,這樣雖然減弱或消除了符號間干擾,由於破壞了子載波間的正交性,從而導致了子載波之間的干擾(ICI)。因此,這種方法在OFDM系統中不能採用。在OFDM系統中,為了既可以消除 ISI,又可以消除 ICI,通常保護間隔是由CP(Cycle Prefix ,循環前綴來)充當。CP 是系統開銷,不傳輸有效數據,從而降低了頻譜效率。而 FBMC 利用一組不交疊的帶限子載波實現多載波傳輸,FMC 對於頻偏引起的載波間干擾非常小,不需要 CP(循環前綴),較大的提高了頻率效率。
3. 毫米波(millimetre waves ,mmWaves)
什麼叫毫米波?頻率 30GHz 到 300GHz,波長范圍 10 到 1 毫米。由於足夠量的可用帶寬,較高的天線增益,毫米波技術可以支持超高速的傳輸率,且波束窄,靈活可控,可以連接大量設備。
4. 大規模 MIMO 技術(3D /Massive MIMO)
MIMO 技術已經廣泛應用於 WIFI、LTE 等。理論上,天線越多,頻譜效率和傳輸可靠性就越高。大規模 MIMO 技術可以由一些並不昂貴的低功耗的天線組件來實現,為實現在高頻段上進行移動通信提供了廣闊的前景,它可以成倍提升無線頻譜效率,增強網路覆蓋和系統容量,幫助運營商最大限度利用已有站址和頻譜資源。我們以一個 20 平方厘米的天線物理平面為例,如果這些天線以半波長的間距排列在一個個方格中,則:如果工作頻段為 3.5GHz,就可部署 16 副天線。
5.認知無線電技術(Cognitive radio spectrum sensing techniques)
認知無線電技術最大的特點就是能夠動態的選擇無線信道。在不產生干擾的前提下,手機通過不斷感知頻率,選擇並使用可用的無線頻譜。
6.超寬頻頻譜
信道容量與帶寬和 SNR 成正比,為了滿足 5G 網路 Gpbs 級的數據速率,需要更大的帶寬。頻率越高,帶寬就越大,信道容量也越高。因此,高頻段連續帶寬成為 5G 的必然選擇。得益於一些有效提升頻譜效率的技術(比如:大規模 MIMO),即使是採用相對簡單的調制技術(比如 QPSK),也可以實現在 1Ghz 的超帶寬上實現 10Gpbs 的傳輸速率。
7. ultra-dense Hetnets(超密度異構網路)
立體分層網路(HetNet)是指,在宏蜂窩網路層中布放大量微蜂窩(Microcell)、微微蜂窩(Picocell)、毫微微蜂窩(Femtocell)等接入點,來滿足數據容量增長要求。到了 5G 時代,更多的物-物連接接入網路,HetNet 的密度將會大大增加。
8. 多技術載波聚合(multi-technology carrier aggregation)
如果沒有記錯,3GPP R12 已經提到這一技術標准。未來的網路是一個融合的網路,載波聚合技術不但要實現 LTE內載波間的聚合,還要擴展到與 3G、WIFI 等網路的融合。多技術載波聚合技術與 HetNet 一起,終將實現萬物之間的無縫連接。
『貳』 5g相當於4g速度要快了十幾倍,那麼它是通過什麼來實現的
5G網路最快在2019年估計就可以體驗了,雖然說還不知道資費如何叢信,但是我們可以了解一下它的速度。5G的下載速度是1Gbps,4G為100Mbps!
5G WiFi運行在5Ghz無線電波頻段。具有更高的無線傳輸速度的特徵。5G WiFi的入門級速度是433Mbps,這至少是現在WiFi速率的三倍,一些高性能的5G WiFi還脊族能達到1Gbps以上。
『叄』 5G無線接入網運用了什麼最新技術
5G無線接入網運用了以下最新技術:
1.更高的頻率:5G使用更高頻率的無線電波,可以提供更高的數據傳輸速率和更大的網路容量。
2.大規模天山棚首線陣列:5G使用大規模天線陣列技術,可以提高網路效率逗數和信號覆蓋范圍和激。
3.網路切片:5G使用網路切片技術,可以將網路分割成多個虛擬網路,以滿足不同應用程序的不同需求。
4.多用戶多入多出(MU-MIMO):5G使用MU-MIMO技術,可以同時向多個用戶傳輸數據,提高網路效率和吞吐量。
5.低延遲:5G使用低延遲技術,可以在更短的時間內傳輸數據,使實時應用程序如VR和AR更加流暢。
『肆』 5g的三大核心技術
5G的三大核心技術分別是SBA、CUPS和網路切片。
什麼是SBA?
SBA(ServiceBasedArchitecture),即基於服務的架構。它基於雲原生構架設計,借鑒了IT領域的「微服務」理念。
眾所周知,傳統網元是一種緊耦合的黑盒設計,NFV(網路功能虛擬化)從黑盒設備中解耦出網路功能軟體,但解耦後的軟體依然是「大塊頭」的單體式構架,需進一步分解為細粒度化的模塊化組件,並通過開放API介面來實現集成,以提升應用開發的整體敏捷性和彈性。
為此,業界提出了基於CloudNative的設計原則。
CloudNative的使命是改變世界如何構建軟體,其主要由微服務架構、DevOps和以容器為代表的敏捷基礎架構幾部分組成,目標是實現交付的彈性、可重復性和可靠性。
微服務就是指將Monolithic(這個詞太難傳神翻譯了,本文翻譯成單體式應用程序)拆分為多個粒度更小的微服務,微服務之間通過API交互,且每個微服務獨立於其他服務進行部署、升級、擴展,可在不影響客戶使用的情況下頻繁更新正在使用的應用。
正是基於這樣的設計理念,傳統網元先是轉換為網路功能(NF),然後NF再被分解為多個「網路功能服務」。
SBA=網路功能服務+基於服務的介面。網路功能可由多個模塊化的「網路功能服務」組成,並通過「基於服務的介面」來展現其功能,因此「網路功能服務」可以被授權的NF靈活使用。
其中,NRF(NFRepositoryFunction,NF貯存功能)支持網路功能服務注冊登記、狀態監測等,實現網路功能服務自動化管理、選擇和可擴展。
CUPS
CUPS(ControlandUserPlaneSeparation),即控制與用戶面分離。目的是讓網路用戶面功能擺脫「中心化」的囚禁,使其既可靈活部署於核心網(中心數據中心),也可部署於接入網(邊緣數據中心),最終實現可分布式部署。
事實上,核心網一直沿著控制面和用戶面分離的方向演進。比如,從R7開始,通過DirectTunnel技術將控制面和用戶面分離,在3GRNC和GGSN之間建立了直連用戶面隧道,用戶面數據流量直接繞過SGSN在RNC和GGSN之間傳輸。到了R8,出現了MME這樣的純信令節點。
只是到了4.5G和5G時代,這一分離的趨勢更加徹底,也更加必要。
其中一大原因就是,為了滿足5G網路毫秒級時延的KPI。
光纖傳播速度為200km/ms,數據要在相距幾百公里以上的終端和核心網之間來回傳送,顯然是無法滿足5G毫秒級時延的。物理距離受限,這是硬傷。
因此,需將內容下沉和分布式的部署於接入網側(邊緣數據中心),使之更接近用戶,降低時延和網路回傳負荷。
網路切片
5G服務是多樣化的,包括車聯網、大規模物聯網、工業自動化、遠程醫療、VR/AR等等。
這些服務對網路的要求是不一樣的,比如工業自動化要求低時延、高可靠但對數據速率要求不高;高清視頻無需超低時延但要求超高速率;一些大規模物聯網不需要切換,部分移動性管理對之而言是信令浪費等等,為此5G要像一把瑞士軍刀一樣,多功能滿足差異化的網路服務。
於是,我們就要把網路切成多個虛擬且相互隔離的子網路,分別應對不同的服務。
當然,這么靈活的切片工作豈是傳統大塊頭的黑盒設備能擔當的,自然要虛擬化、軟體化,再將網路功能進一步細粒度模塊化,才能實現靈活組裝業務應用。
因此,3GPP就確認了由中國移動牽頭26家公司提出的SBA構架為5G核心網基礎構架。