⑴ PCR的原理
聚合酶鏈反應(Polymerase Chain Reaction ,PCR)是80年代中期發展起來的體外核酸擴增技術。它具有特異、敏感、產率高、快速、簡便、重復性好、易自動化等突出優點;能在一個試管內將所要研究 的目的基因或某一DNA片段於數小時內擴增至十萬乃至百萬倍,使肉眼能直接觀察和判斷;可從一根毛發、一滴血、甚至一個細胞中擴增出足量的DNA供分析研 究和檢測鑒定。過去幾天幾星期才能做到的事情,用PCR幾小時便可完成。PCR技術是生物醫學領域中的一項革命性創舉和里程碑。
PCR技術簡史
PCR的最早設想 核酸研究已有100多年的歷史,本世紀60年代末、70年代初人們致力於研究基因的體外分離技術,Korana於1971年最早提出核酸體外擴增的設想:「經過DNA變性,與合適的引物雜交,用DNA聚合酶延伸引物,並不斷重復該過程便可克隆tRNA基因」。
PCR的實現 1985年美國PE-Cetus公司人類遺傳研究室的Mullis等發明了具有劃時代意義的聚合酶鏈反應。其原理類似於DNA的體內復制,只是在試管中給 DNA的體外合成提供以致一種合適的條件---摸板DNA,寡核苷酸引物,DNA聚合酶,合適的緩沖體系,DNA變性、復性及延伸的溫度與時間。
PCR的改進與完善 Mullis最初使用的DNA聚合酶是大腸桿菌DNA聚合酶I的 Klenow片段,其缺點是:①Klenow酶不耐高溫,90℃會變性失活,每次循環都要重新加。②引物鏈延伸反應在37℃下進行,容易發生模板和引物之 間的鹼基錯配,其PCR產物特異性較差,合成的DNA片段不均一。此種以Klenow酶催化的PCR技術雖較傳統的基因擴增具備許多突出的優點,但由於 Klenow酶不耐熱,在DNA模板進行熱變性時,會導致此酶鈍化,每加入一次酶只能完成一個擴增反應周期,給PCR技術操作程序添了不少困難。這使得 PCR技術在一段時間內沒能引起生物醫學界的足夠重視。1988年初,Keohanog改用T4 DNA聚合酶進行PCR,其擴增的DNA片段很均一,真實性也較高,只有所期望的一種DNA片段。但每循環一次,仍需加入新酶。1988年Saiki 等從溫泉中分離的一株水生嗜熱桿菌(thermus aquaticus) 中提取到一種耐熱DNA聚合酶。此酶具有以下特點:①耐高溫,在70℃下反應2h後其殘留活性大於原來的90%,在93℃下反應2h後其殘留活性是原來的 60%,在95℃下反應2h後其殘留活性是原來的40%。②在熱變性時不會被鈍化,不必在每次擴增反應後再加新酶。③大大提高了擴增片段特異性和擴增效 率,增加了擴增長度(2.0Kb)。由於提高了擴增的特異性和效率,因而其靈敏性也大大提高。為與大腸桿菌多聚酶I Klenow片段區別,將此酶命名為Taq DNA多聚酶(Taq DNA Polymerase)。此酶的發現使PCR廣泛的被應用。
PCR技術基本原理
PCR技術的基本原理 類似於DNA的 天然復制過程,其特異性依賴於與靶序列兩端互補的寡核苷酸引物。PCR由變性--退火--延伸三個基本反應步驟構成:①模板DNA的變性:模板DNA經加 熱至93℃左右一定時間後,使模板DNA雙鏈或經PCR擴增形成的雙鏈DNA解離,使之成為單鏈,以便它與引物結合,為下輪反應作準備;②模板DNA與引 物的退火(復性):模板DNA經加熱變性成單鏈後,溫度降至55℃左右,引物與模板DNA單鏈的互補序列配對結合;③引物的延伸:DNA模板--引物結合 物在TaqDNA聚合酶的作用下,以dNTP為反應原料,靶序列為模板,按鹼基配對與半保留復制原理,合成一條新的與模板DNA 鏈互補的半保留復制鏈重復循環變性--退火--延伸三過程,就可獲得更多的「半保留復制鏈」,而且這種新鏈又可成為下次循環的模板。每完成一個循環需 2~4分鍾,2~3小時就能將待擴目的基因擴增放大幾百萬倍。到達平台期(Plateau)所需循環次數取決於樣品中模板的拷貝。
PCR的反應動力學 PCR的三個反應步驟反復進行,使DNA擴增量呈指數上升。反應最終的DNA 擴增量可用Y=(1+X)n計算。Y代表DNA片段擴增後的拷貝數,X表示平(Y)均每次的擴增效率,n代表循環次數。平均擴增效率的理論值為100%, 但在實際反應中平均效率達不到理論值。反應初期,靶序列DNA片段的增加呈指數形式,隨著PCR產物的逐漸積累,被擴增的DNA片段不再呈指數增加,而進 入線性增長期或靜止期,即出現「停滯效應」,這種效應稱平台期數、PCR擴增效率及DNA聚合酶PCR的種類和活性及非特異性產物的竟爭等因素。大多數情 況下,平台期的到來是不可避免的。
PCR擴增產物 可分為長產物片段和短產物片段兩部分。短產物片段的長度嚴格地限定在兩個引物鏈5』端之間,是需要擴增的特定片段。短產物片段和長產物片段是由於引物所 結合的模板不一樣而形成的,以一個原始模板為例,在第一個反應周期中,以兩條互補的DNA為模板,引物是從3』端開始延伸,其5』端是固定的,3』端則沒 有固定的止點,長短不一,這就是「長產物片段」。進入第二周期後,引物除與原始模板結合外,還要同新合成的鏈(即「長產物片段」)結合。引物在與新鏈結合 時,由於新鏈模板的5』端序列是固定的,這就等於這次延伸的片段3』端被固定了止點,保證了新片段的起點和止點都限定於引物擴增序列以內、形成長短一致的 「短產物片段」。不難看出「短產物片段」是按指數倍數增加,而「長產物片段」則以算術倍數增加,幾乎可以忽略不計, 這使得PCR的反應產物不需要再純化,就能保證足夠純DNA片段供分析與檢測用。
PCR反應體系與反應條件
標準的PCR反應體系:
10×擴增緩沖液 10ul
4種dNTP混合物 各200umol/L
引物 各10~100pmol
模板DNA 0.1~2ug
Taq DNA聚合酶 2.5u
Mg2+ 1.5mmol/L
加雙或三蒸水至 100ul
PCR反應五要素: 參加PCR反應的物質主要有五種即引物、酶、dNTP、模板和Mg2+
引物: 引物是PCR特異性反應的關鍵,PCR 產物的特異性取決於引物與模板DNA互補的程度。理論上,只要知道任何一段模板DNA序列,就能按其設計互補的寡核苷酸鏈做引物,利用PCR就可將模板DNA在體外大量擴增。
設計引物應遵循以下原則:
①引物長度: 15-30bp,常用為20bp左右。
②引物擴增跨度: 以200-500bp為宜,特定條件下可擴增長至10kb的片段。
③引物鹼基:G+C含量以40-60%為宜,G+C太少擴增效果不佳,G+C過多易出現非特異條帶。ATGC最好隨機分布,避免5個以上的嘌呤或嘧啶核苷酸的成串排列。
④避免引物內部出現二級結構,避免兩條引物間互補,特別是3』端的互補,否則會形成引物二聚體,產生非特異的擴增條帶。
⑤引物3』端的鹼基,特別是最末及倒數第二個鹼基,應嚴格要求配對,以避免因末端鹼基不配對而導致PCR失敗。
⑥引物中有或能加上合適的酶切位點,被擴增的靶序列最好有適宜的酶切位點,這對酶切分析或分子克隆很有好處。
⑦引物的特異性:引物應與核酸序列資料庫的其它序列無明顯同源性。
引物量: 每條引物的濃度0.1~1umol或10~100pmol,以最低引物量產生所需要的結果為好,引物濃度偏高會引起錯配和非特異性擴增,且可增加引物之間形成二聚體的機會。
酶及其濃度 目前有兩種Taq DNA聚合酶供應, 一種是從棲熱水生桿菌中提純的天然酶,另一種為大腸菌合成的基因工程酶。催化一典型的PCR反應約需酶量2.5U(指總反應體積為100ul時),濃度過高可引起非特異性擴增,濃度過低則合成產物量減少。
dNTP的質量與濃度 dNTP的質量與濃度和PCR擴增效率有密切關系,dNTP粉呈顆粒狀,如保存不當易變性失去生物學活性。dNTP溶液呈酸性,使用時應配成高濃度後,以1M NaOH或1M Tris。HCL的緩沖液將其PH調節到7.0~7.5,小量分裝, -20℃冰凍保存。多次凍融會使dNTP降解。在PCR反應中,dNTP應為50~200umol/L,尤其是注意4種dNTP的濃度要相等( 等摩爾配製),如其中任何一種濃度不同於其它幾種時(偏高或偏低),就會引起錯配。濃度過低又會降低PCR產物的產量。dNTP能與Mg2+結合,使游離的Mg2+濃度降低。
模板(靶基因)核酸 模板核酸的量與純化程度,是PCR成敗與否的關鍵環節之一,傳統的DNA純化方法通常採用SDS和蛋白酶K來消化處理標本。 SDS的主要功能是: 溶解細胞膜上的脂類與蛋白質,因而溶解膜蛋白而破壞細胞膜,並解離細胞中的核蛋白,SDS 還能與蛋白質結合而沉澱;蛋白酶K能水解消化蛋白質,特別是與DNA結合的組蛋白,再用有機溶劑酚與氯仿抽提掉蛋白質和其它細胞組份,用乙醇或異丙醇沉澱 核酸。提取的核酸即可作為模板用於PCR反應。一般臨床檢測標本,可採用快速簡便的方法溶解細胞,裂解病原體,消化除去染色體的蛋白質使靶基因游離,直接 用於PCR擴增。RNA模板提取一般採用異硫氰酸胍或蛋白酶K法,要防止RNase降解RNA。
Mg2+濃度 Mg2+對PCR擴增的特異性和產量有顯著的影響,在一般的PCR反應中,各種dNTP濃度為200umol/L時,Mg2+濃度為1.5~2.0mmol/L為宜。Mg2+濃度過高,反應特異性降低,出現非特異擴增,濃度過低會降低Taq DNA聚合酶的活性,使反應產物減少。
PCR反應條件的選擇
PCR反應條件為溫度、時間和循環次數。
溫度與時間的設置: 基於PCR原理三步驟而設置變性-退火-延伸三個溫度點。在標准反應中採用三溫度點法,雙鏈DNA在90~95℃變性,再迅速冷卻至40 ~60℃,引物退火並結合到靶序列上,然後快速升溫至70~75℃,在Taq DNA 聚合酶的作用下,使引物鏈沿模板延伸。對於較短靶基因(長度為100~300bp時)可採用二溫度點法, 除變性溫度外、退火與延伸溫度可合二為一,一般採用94℃變性,65℃左右退火與延伸(此溫度Taq DNA酶仍有較高的催化活性)。
①變性溫度與時間:變性溫度低,解鏈不完全是導致PCR失敗的最主要原因。一般情況下,93℃~94℃lmin足以使模板DNA變性,若低於93℃則 需延長時間,但溫度不能過高,因為高溫環境對酶的活性有影響。此步若不能使靶基因模板或PCR產物完全變性,就會導致PCR失敗。
②退火(復性)溫度與時間:退火溫度是影響PCR特異性的較重要因素。變性後溫度快速冷卻至40℃~60℃,可使引物和模板發生結合。由於模板DNA 比引物復雜得多,引物和模板之間的碰撞結合機會遠遠高於模板互補鏈之間的碰撞。退火溫度與時間,取決於引物的長度、鹼基組成及其濃度,還有靶基序列的長 度。對於20個核苷酸,G+C含量約50%的引物,55℃為選擇最適退火溫度的起點較為理想。引物的復性溫度可通過以下公式幫助選擇合適的溫度:
Tm值(解鏈溫度)=4(G+C)+2(A+T)
復性溫度=Tm值-(5~10℃)
在Tm值允許范圍內, 選擇較高的復性溫度可大大減少引物和模板間的非特異性結合,提高PCR反應的特異性。復性時間一般為30~60sec,足以使引物與模板之間完全結合。
③延伸溫度與時間:Taq DNA聚合酶的生物學活性:
70~80℃ 150核苷酸/S/酶分子
70℃ 60核苷酸/S/酶分子
55℃ 24核苷酸/S/酶分子
高於90℃時, DNA合成幾乎不能進行。
PCR反應的延伸溫度一般選擇在70~75℃之間,常用溫度為72℃,過高的延伸溫度不利於引物和模板的結合。PCR延伸反應的時間,可根據待擴增片段的長度而定,一般1Kb以內的DNA片段,延伸時間1min是足夠 的。3~4kb的靶序列需3~4min;擴增10Kb需延伸至15min。延伸進間過長會導致非特異性擴增帶的出現。對低濃度模板的擴增,延伸時間要稍長些。
循環次數 循環次數決定PCR擴增程度。PCR循環次數主要取決於模板DNA的濃度。一般的循環次數選在30~40次之間,循環次數越多,非特異性產物的量亦隨之增多。
PCR反應特點
特異性強 PCR反應的特異性決定因素為:
①引物與模板DNA特異正確的結合;
②鹼基配對原則;
③Taq DNA聚合酶合成反應的忠實性;
④靶基因的特異性與保守性。
其中引物與模板的正確結合是關鍵。引物與模板的結合及引物鏈的延伸是遵循鹼基配對原則的。聚合酶合成反應的忠實性及Taq DNA聚合酶耐高溫性,使反應中模板與引物的結合(復性)可以在較高的溫度下進行,結合的特異性大大增加,被擴增的靶基因片段也就能保持很高的正確度。再通過選擇特異性和保守性高的靶基因區,其特異性程度就更高。
靈敏度高 PCR產物的生成量是以指數方式增加的,能將皮克(pg=10-12g)量級的起始待測模板擴增到微克(ug=10-6g)水平。能從100萬個細胞中檢出一個靶細胞;在病毒的檢測中,PCR的靈敏度可達3個RFU(空斑形成單位);在細菌學中最小檢出率為3個細菌。
簡便、快速 PCR反應用耐高溫的Taq DNA聚合酶,一次性地將反應液加好後,即在DNA擴增液和水浴鍋上進行變性-退火-延伸反應,一般在2~4 小時完成擴增反應。擴增產物一般用電泳分析,不一定要用同位素,無放射性污染、易推廣。
對標本的純度要求低 不需要分離病毒或細菌及培養細胞,DNA 粗製品及總RNA均可作為擴增模板。可直接用臨床標本如血液、體腔液、洗嗽液、毛發、細胞、活組織等粗製的DNA擴增檢測。 PCR擴增產物分析
PCR產物是否為特異性擴增 ,其結果是否准確可靠,必須對其進行嚴格的分析與鑒定,才能得出正確的結論。PCR產物的分析,可依據研究對象和目的不同而採用不同的分析方法。
凝膠電泳分析:PCR產物電泳,EB溴乙錠染色紫外儀下觀察,初步判斷產物的特異性。PCR產物片段的大小應與預計的一致,特別是多重PCR,應用多對引物,其產物片斷都應符合預訐的大小,這是起碼條件。
瓊脂糖凝膠電泳: 通常應用1~2%的瓊脂糖凝膠,供檢測用。
聚丙烯醯胺凝膠電泳:6~10%聚丙烯醯胺凝膠電泳分離效果比瓊脂糖好,條帶比較集中,可用於科研及檢測分析。
酶切分析:根據PCR產物中限制性內切酶的位點,用相應的酶切、電泳分離後,獲得符合理論的片段,此法既能進行產物的鑒定,又能對靶基因分型,還能進行變異性研究。
分子雜交:分子雜交是檢測PCR產物特異性的有力證據,也是檢測PCR 產物鹼基突變的有效方法。
Southern印跡雜交: 在兩引物之間另合成一條寡核苷酸鏈(內部寡核苷酸)標記後做探針,與PCR產物雜交。此法既可作特異性鑒定,又可以提高檢測PCR產物的靈敏度,還可知其分子量及條帶形狀,主要用於科研。
斑點雜交: 將PCR產物點在硝酸纖維素膜或尼膜薄膜上,再用內部寡核苷酸探針雜交,觀察有無著色斑點,主要用於PCR產物特異性鑒定及變異分析。
參考資料:http://..com/question/4605186.html