A. 數據分析師需要學什麼
數據分析師要學習以下幾點:
一、統計學
對於互聯網的數據分析來說,並不需要掌握太復雜的統計理論。所以只要按照本科教材,學一下統計學就夠了。
二、編程能力
學會一門編程語言,會讓處理數據的效率大大提升。如果只會在 Excel 上復制粘貼,動手能力是不可能快的。
三、資料庫
數據分析師經常和資料庫打交道,不掌握資料庫的使用可不行。學會如何建表和使用 SQL 語言進行數據處理,可以說是必不可少的技能。
四、數據倉庫
許多人分不清楚資料庫和數據倉庫的差異,簡單來說,數據倉庫記錄了所有歷史數據,專門設計為方便數據分析人員高效使用的。
五、數據分析方法
對於互聯網數據分析人員來說,可以看一下《精益創業》和《精益數據分析》,掌握常用的數據分析方法,然後再根據自己公司的產品調整,靈活組合。
六、數據分析工具
SAS、Matlab、SPSS 這些工具經常有人推薦。
關於數據分析師的學習可以到CDA認證機構咨詢一下,CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。
B. 數據分析師需要學習哪些技能
① Excel工具對於數據分析師來說,Excel是一個必備的技能,經過大量的實踐發現,Excel是一個比較靠譜的工具,如果用Excel分析數據,就能夠做好數據的分析,同時Excel操作也是比較簡單的,不是程序員也能夠正常的使用。現在有很多企業都在使用Excel這項工具進行去分析數據,所以,數據分析師必須要學會使用Excel。
②行業知識
對於數據分析師來說,業務的了解比數據方法論更重要。而且業務學習沒有捷徑,基本都靠不斷的思考與不斷的總結,這樣才能夠做好數據分析。
③SQL
sql是所有資料庫查詢的語言,而資料庫也是有很多的類型的,比如mysql、sqlserver、oracle等等,對於不同的資料庫,sql語法會有所不同,但是總體上大同小異,只是細微處的差別。如果大家有資料庫基礎的話,那麼只需要找些sql的題目做一做,這樣也能夠提到sql水平。
④數據分析思維
如果作為一名數據分析師,需要很縝密的心思以及對數據很敏感的喜歡,這樣才能夠發現他人會遺漏的東西。有力這些還不夠,我們還需要有一個數據分析的思維,那麼怎麼有一個數據分析的思維呢?一般來說,需要梳理分析思路,並搭建分析框架,把分析目的分解成若干個不同的分析要點,即清楚如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標。同時,確保分析框架的體系化和邏輯性。
⑤統計學
一名優秀的數據分析師還應該精通統計學,只有學會了統計學,才能夠進行數據分析,數據分析是通過大量的數據進行挑選出有用的數據,這樣才能夠做好正確的分析。統計學的統計知識能夠讓我們多了一種角度去看待數據,這樣能夠看出不同的情況,為數據分析中提供了參考價值。
C. 一個合格的數據分析師需要什麼技能
【導讀】數據分析說是新行業卻也不新了,不過對於此類行業,還是有很多小夥伴對此不知如何下手,那麼對與剛入行的小白,如何走到成熟,成為一個合格的數據分析師呢?為此小編通過整理資深的數據分析師必備的幾項技能作以分析,下面我們一起來看看一個合格的數據分析師需要什麼技能?
1、統計
統計作為數據分析的基石,自然是每個數據分析師不可或缺的一項技能。統計方法包括定量方法、決策分析、資料庫原理、預測分析、數據管理、優化、大數據分析以及數據挖掘等。
2、數據可視化工具
(1)Excel
Excel是一款常用的數據顯示工具。Excel中的數據分析功能非常強大,它包括描述統計、相關系數、概率分布、均值估計、線性、非線性回歸、多元回歸分析以及時間序列等功能。普通的數據分析人員掌握Excel這一類簡單的可視化工具足矣。
(2)專業的可視化軟體
D3.js、HighCharts、Tableau和PowerBI等都是專業的可視化工具。如果,你想要成為專業的數據分析師,你必須掌握其中的一種或者幾種。
(3)Python
學習過Python的人都知道,Python中有很多用於可視化的第三方庫,例如matplotlib、seaborn、plotly、Boken、pyecharts等。這些可視化庫具有其優勢,並已在實際應用中廣泛使用。
3、大數據處理框架
如果你想成為大數據分析師,那麼你一定要學會大數據框架的基礎知識。大數據處理框架可以用於計算大數據系統的數據。
4,資料庫
一些數據分析人員會專門清理數據。但如果你想出類拔萃,你就需要掌握每種演算法的精髓——資料庫基礎。SQL是資料庫中的核心技術。MySQL、SQL
Server和Oracle是使用最廣泛的資料庫。
5,數據倉庫
數據倉庫在數據分析中起到至關重要的作用。它是一個面向主題的、集成的、相對穩定的數據集,可反映歷史變化。數據倉庫具有集成,穩定,高質量的優勢。基於數據倉庫進行數據分析可以保證數據質量和數據完整性。
6,人工智慧
從嚴格意義上講,人工智慧和數據分析師完全兩種概念,不屬於同一領域。因此,大數據分析科學家需要此技能。如果你是新手,這一塊就可以先放一放。
人工智慧所涵蓋的知識過於廣泛和深入,因此最好採用基於問題的學習方法。首先,選擇問題。然後,找到解決問題的資源,並進一步了解解決問題過程中遇到的名詞和知識。
7,機器學習
機器學習是人工智慧的一個分支,它可以自動分析數據並從中獲取規則,並使用規則來預測未知數據。它已被廣泛應用於數據挖掘、計算機視覺、自然語言處理、搜索引擎、醫學診斷、證券市場分析等領域。
8,數據挖掘技巧
操作數據挖掘軟體是數據分析師的必備技能之一。它是大多數商業智能計劃的核心應用程序,數據挖掘軟體可以幫助您從大量數據中發現見解。主要包括分類演算法,聚類演算法,相關性分析,連接分析等,是必須掌握的數據挖掘基本演算法的研究。
9.編程語言
精通編程語言可以使數據分析工作更加靈活。編程語言適用於所有類型的數據。大多數新奇的儀錶板都可以通過代碼或繪圖軟體來實現。
(1)R語言
R是一種開源並且免費的編程語言,其圖形功能非常強大。如果你想要對海量的數據進行統計分析,R一定是最好的選擇。
(2)Python語言
如果你想要在GPU上進行NLP或密集的神經網路處理,選擇Python會更好。
(3)Java或Scala
如果你想要的得到一個面向生產的數據流解決方案,最好選擇Java或者Scala。
10.撰寫報告
編寫數據分析報告是對數據分析的總結和介紹。報告內容必須完成呈現數據分析的原因、過程、結果和建議,供決策者參考。另外,我們在寫報告時,切記不要只寫數據結果,還應該寫上明確的結論。
當然,除了以上數據分析師必備技能外,數據敏感度、邏輯思維能力、歸納能力、批判性思維能力以及溝通能力等軟技能也是一個優秀數據分析師的必備技能。
關於「一個合格的數據分析師需要什麼技能?」的內容就給大家介紹到這里了,更多關於大數據分析的相關內容,關注小編,持續更新。
D. 零基礎學習數據分析師需要掌握哪些技術
一般來說,我會建議小白把學習分四個階段,第一個階段是工具課,就是工具入門,怎麼操作,比如Excel、SQL、Python再到可視化,之後就是第二階段第三階段多做實驗項目,這個階段是數據分析思維和業務邏輯思維的實操,然後把第一個階段工具的使用在第二階段第三階段鞏固使用,因為只學工具操作但不做項目的話,一兩周可能前面的知識就都忘光了。
E. 數據分析專員需要掌握什麼技能
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。
分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。
編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。
邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。
數據可視化
數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。
協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。