Ⅰ 放射性自顯影的原理
放射自顯影是利用射線能使感光材料感光的原理,探測放射性核素或其標記化合物在生物組織中分布狀態的一種顯影技術。
放射自顯影的原理是利用放射性同位素所發射出來的帶電離子(α或β粒子)作用於感光材料的鹵化銀晶體,從而產生潛影,這種潛影可用顯影液顯示,成為可見的"像",因此,它是利用鹵化銀乳膠顯像檢查和測量放射性的一種方法。
自顯影實驗中常用核素的半衰期與能量
放射自顯影的原理是利用放射性同位素所發射出來的帶電離子(α或β粒子)作用於感光材料的鹵化銀晶體,從而產生潛影,這種潛影可用顯影液顯示,成為可見的"像",因此,它是利用鹵化銀乳膠顯像檢查和測量放射性的一種方法。
放射性核素的原子不斷衰變,當衰變掉一半時所需要的時間稱為半衰期。各種放射性核素的半衰期長短不同(表),在自顯影實驗中多選用半衰期較長者。對於半衰期較短的核素,應選用較快的樣品制備方法,所用劑量也應加大。
Ⅱ 放射自顯影、SPECT、PET三者之間的區別,謝謝了。
你好,我對放射自顯影也不了解。就跟你說說SPECT和PET吧。
SPECT(single photon emission computered tomography,單光子放射計算機斷層成像), 是基於gamma 機(二維)地一種三維斷層成像技術,一般被檢查地病人需要服用或被注射一些放射性核素,然後通過機器的探頭捕捉gamma放射線,通過計算機重建技術進行重建。
PET(postron emission tomography, 正電子輻射斷層成像), 這個跟SPECT地大體很像,也是和醫學的一種,但成像的最基本原理不一樣:PET需要病人服用或注射的核素衰變時必須要放出正電子(postron) ,而不是直接輻射gamma光子。然後正電子在病人體內走大概幾毫米的距離後和病人體內大量存在的電子發生中和(湮滅)反應,並發出兩個方向相反,能量都為511KeV的光子,然後利用這對光子在進行定位。最後也是通過計算機對大量的光子對進行處理最後重建圖像。
還有一個很簡單的辦法區分SPECT和PET,SPECT一般跟gamma相機相似,有兩個到三個探頭,而PET機器從外面看起來更像X光機,因為很多探頭組成了一個環,隱藏在了機器內部。
奧,我又查了一下,放射自顯影和之上兩個的主要區別是PET,SPECT主要靠探頭去感應放射線,然後通過計算機技術重建。但放射自顯影會用膠片(film)直接去感知輻射,然後直接成像。
我個人認為,放射自顯影所稱的想應該是二維的,較之前地兩種成像技術,這個應該成本會低得多,但圖像質量應該沒法和前兩者相比。
僅供參考,希望對你有幫助~
Ⅲ 細胞生物學中常用的實驗技術或者方法
第二節 細胞生物學實驗方法與技術
當前細胞生物學與醫葯保健事業聯系的較為緊密的熱點問題主要有以下幾種:1)真核細胞基因結構及其表達調控;2)細胞膜、膜系、受體與信號傳遞研究;3)細胞生長、分化、衰老、癌變、死亡,尤其是程序性細胞死亡的研究;4) 細胞工程,包括基因工程及體細胞核移植的研究。
一、細胞培養常用方法
1、細胞原代培養(primay culture) 又稱初代培養,即直接從機體取下細胞、組織、或器官、讓他們在體外維持與生長。原代細胞的特點是細胞或組織剛離開機體,他們的生物狀態尚未發生很大的改變,一定程度上可反映他們在體內的狀態,表現出來源組織或細胞的特性,因此用於葯物實驗尤其是葯物對細胞活動、結構、代謝、有無毒性或殺傷作用等研究是極好工具。常用的原代培養方法有組織快培養法及消化培養法。前者方法簡單,細胞也較易生長,尤其是培養心肌有時能觀察到心肌組織塊的搏動。細胞從組織塊外長並鋪滿培養皿或培養瓶後即可進行傳代。2、細胞的傳代培養 當細胞生長至單層匯合時,便需要進行分離培養否則會因無繁殖空間、營養耗竭而影響生長,甚至整片細胞脫離基質懸浮起來直至死亡。為此當細胞達到一定密度時必須傳代或再次培養,目的是藉此繁殖更多的細胞,另一方面是防止細胞的退化死亡。
二、器官培養方法
器官培養(organ culture)是指用特殊的裝置使器官、器官原基或它們的一部分在體外存活,幷保持其原有的結構和功能。器官培養可模擬體內的三維結構,用於觀察組織間的相互反應、組織與細胞的分化以及外界因子包括葯物對組織細胞的作用。
器官培養方法很多,最經典的方法即表玻皿器官培養法;一種最常用的方法是不銹鋼金屬網格法及Wolff培養法和擴散盒培養法,實驗者可根據情況選擇採用。
三、放射自顯影術測定
放射自顯影術(autoradiography)是利用放射性同位素電離輻射對核子乳膠的感光作用,顯示標本或樣品中放射物的分布、定量以及定位的方法。放射性同位素能在緊密接觸的感光乳膠中記錄下它存在的部位和強度,准確顯示出形態與功能的定位關系。現已可將放射自顯影術與電鏡以及生物分子結合起來。不但可以研究放射性物質在組織和細胞內的分布代謝,而且可以揭示核酸合成及其損傷等改變,目前已在生命科學各領域被廣泛應用。
四、染色體分析技術
染色質或染色體是遺傳物質在細胞水平的形態特徵。前者是指當細胞處於合成期時遺傳物質經鹼性染料著色後,呈現出細絲狀彌漫結構;當細胞進入分裂期時,染色質細絲高度螺旋化凝聚為形態有特徵的染色體。特別是在分裂中期,復制後的染色體達到最高程度的凝聚,稱為中期染色,是進行染色體形態觀察分析的最佳時期。染色體分析應用領域越來越廣,主要用於以下幾方面:1)為臨床診斷提供新手段;2)研究不育和習慣性流產發生的遺傳基礎;3) 通過檢查胎兒的染色體,預防有染色體異常患兒出生(先天愚型);4)根據染色體的多肽性進行親子和異型配子的起源研究;結合DNA重組技術可以將基因定位於染色體的具體區帶上。
五、電鏡技術
早在1940年,英國劍橋大學首先試製成功掃描電子顯微鏡,但因解析度低無實用價值。1965年英國劍橋科學儀器有限公司開始生產出商品掃描電鏡,其以顯著優點廣泛用於生物學、醫學、物理學、化學、電子學及勘探、冶金、國防、公安、機械與輕工業等諸多領域,並已成為非常有用的研究工具。