㈠ 光伏有什麼作用呢應用在哪些方面呢
光伏被定義為射線能量的直接轉換。在實際應用中通常指太陽能向電能的轉換,即太陽能光伏。它的實現方式主要是通過利用硅等半導體材料所製成的太陽能電板,利用光照產生直流電,比如我們日常生活中隨處可見的太陽能電池。
光伏技術具備很多優勢:比如沒有任何機械運轉部件;除了日照外,不需其它任何"燃料",在太陽光直射和斜射情況下都可以工作;而且從站址的選擇來說,也十分方便靈活,城市中的樓頂、空地都可以被應用。自1958年起,太陽能光伏效應以太陽能電池的形式在空間衛星的供能領域首次得到應用。時至今日,小至自動停車計費器的供能、屋頂太陽能板,大至面積廣闊的太陽能發電中心,其在發電領域的應用已經遍及全球。
太陽能是一種快速增長的能源形式,太陽能市場在過去十年中也取得了長足發展。據資料,按年均太陽能系統裝機容量計算,全球太陽能市場復合年均增長率達47.4%,從 2003 年的598MW 增長至2007年的2826MW。預測到2012年,年均太陽能系統裝機容量可能進一步增至9917MW,而整個太陽能行業的銷售額可能從2007年的 172億美元增長至2012年的395億美元。這種增長勢頭在很大程度上要歸功於全球快速增加的市場需求、日益提高的上網電價和各種政府鼓勵措施。
㈡ 什麼是光伏光伏的用途
什麼是光伏:
太陽能發電分為光熱發電和光伏發電。通常說的太陽能發電指的是太陽能光伏發電,簡稱「光電」。光伏發電是利用半導體界面的光生伏特效應而將光能直接轉變為電能的一種技術。這種技術的關鍵元件是太陽能電池。太陽能電池經過串聯後進行封裝保護可形成大面積的太陽電池組件,再配合上功率控制器等部件就形成了光伏發電裝置。
太陽能是取之不盡、用之不竭的清潔能源。太陽能發電分為光熱發電和光伏發電。通常說的太陽能發電指的是太陽能光伏發電,簡稱「光電」。光伏發電系統由太陽電池板(組件)、控制器和逆變器三大部分組成,它們主要由電子元器件構成,不涉及機械部件,因而發電設備極為精煉,可靠、穩定、壽命長,安裝維護簡便。與常用的火力發電系統相比,太陽能發電系統除了無污染排放外,還具有建設周期短和可利用建築屋面的優勢。
太陽能作為世界上最清潔的能源,目前有著廣泛的用途。但由於質量、價格的限制,太陽能發電在國內的利用還處在低水平上,與中國的經濟發展形成很大的反差。
8月1日,國家發改委公布了全國統一的太陽能光伏發電標桿上網電價,即2011年7月1日及以後核準的太陽能光伏發電項目(除西藏外),均按每千瓦時1元執行。不少業內人士認為,這是我國光伏發電產業發展的重要里程碑,光伏發電也將開始走上商業化的道路。
隨著中國光伏發電產業的規模化發展,光伏發電在成本上一定會有所降低,預計在2014年左右會與傳統電價持平並在此後低於傳統電價。專家預測,隨著我國對於光伏發電產業的扶持,在3到5年內,光伏發電有望進入到每家每戶。
用途如下:
光熱利用
它的基本原理是將太陽輻射能收集起來,通過與物質的相互作用轉換成熱能加以利用。目前使用最多的太陽能收集裝置,主要有平板型集熱器、真空管集熱器、陶瓷太陽能集熱器和聚焦集熱器(槽式、碟式和塔式)等4種。通常根據所能達到的溫度和用途的不同,而把太陽能光熱利用分為低溫利用(<200℃)、中溫利用(200~800℃)和高溫利用(>800℃)。目 前低溫利用主要有太陽能熱水器、太陽能乾燥器、太陽能蒸餾器、太陽能採暖(太陽房)、太陽能溫室、太陽能空調製冷系統等,中溫利用主要有太陽灶、太陽能熱發電聚光集熱裝置等,高溫利用主要有高溫太陽爐等。
發電利用
清立新能源未來太陽能的大規模利用是用來發電。利用太陽能發電的方式有多種。已實用的主要有以下兩種。
1、光—熱—電轉換。即利用太陽輻射所產生的熱能發電。一般是用太陽能集熱器將所吸收的熱能轉換為工質的蒸汽,然後由蒸汽驅動氣輪機帶動發電機發電。前一過程為光—熱轉換,後一過程為熱—電轉換。
2、光—電轉換。其基本原理是利用光生伏特效應將太陽輻射能直接轉換為電能,它的基本裝置是太陽能電池。
太陽能電池
【材料要求】耐紫外光線的輻射,透光率不下降。鋼化玻璃作成的組件可以承受直徑25毫米的冰球以23米/秒的速度撞擊。
【裝用的EVA膠膜固化後的性能要求】透光率大於90%;交聯度大於65-85%;剝離強度(N/cm),玻璃/膠膜大於30;TPT/膠膜大於15;耐溫性:高溫85℃、低溫-40℃;太陽電池的背面,耐老化、耐腐蝕、耐紫外線輻射、不透氣等。
【用途】太陽能發電廣泛用於太陽能路燈、太陽能殺蟲燈、太陽能攜帶型系統,太陽能移動電源,太陽能應用產品,通訊電源,太陽能燈具,太陽能建築等領域。
太陽能在2050年前可能將成為電力的主要來源,受助於發電設備成本大跌。IEA報告表示,2050年前太陽能光伏(PV)系統將最多為全球貢獻16%的電力,來自太陽能發電廠的太陽能熱力發電(STE)將提供11%的電力。
光化利用
這是一種利用太陽輻射能直接分解水制氫的光—化學轉換方式。它包括光合作用、光電化學作用、光敏化學作用及光分解反應。
光化轉換就是因吸收光輻射導致化學反應而轉換為化學能的過程。其基本形式有植物的光合作用和利用物質化學變化貯存太陽能的光化反應。
植物靠葉綠素把光能轉化成化學能,實現自身的生長與繁衍,若能揭示光化轉換的奧秘,便可實現人造葉綠素發電。太陽能光化轉換正在積極探索、研究中。
通過植物的光合作用來實現將太陽能轉換成為生物質的過程。巨型海藻。
燃油利用
歐盟從2011年6月開始,利用太陽光線提供的高溫能量,以水和二氧化碳作為原材料,致力於「太陽能」燃油的研製生產。截止目前,研發團隊已在世界上首次成功實現實驗室規模的可再生燃油全過程生產,其產品完全符合歐盟的飛機和汽車燃油標准,無需對飛機和汽車發動機進行任何調整改動。
研製設計的「太陽能」燃油原型機,主要由兩大技術部分組成:第一部分利用集中式太陽光線聚集產生的高溫能量,輔之ETH Zürich 自主知識產權的金屬氧化物材料添加劑,在自行設計開發的太陽能高溫反應器內將水和二氧化碳轉化成合成氣(Syngas),合成氣的主要成分為氫氣和一氧化碳;第二部分根據費-托原理(Fischer-Tropsch Principe),將余熱的高溫合成氣轉化成可商業化應用於市場的「太陽能」燃油成品。
太陽能的利用目前還不是很普及,利用太陽能發電還存在成本高、轉換效率低的問題,但是太陽能電池在為人造衛星提供能源方面得到了應用。
人類依賴這些能量維持生存,其中包括所有其他形式的可再生能源(地熱能資源除外),雖然太陽能資源總量相當於人類所利用的能源的一萬多倍,但太陽能的能量密度低,而且它因地而異,因時而變,這是開發利用太陽能面臨的主要問題。太陽能的這些特點會使它在整個綜合能源體系中的作用受到一定的限制。
太陽能既是一次能源,又是可再生能源。它資源豐富,既可免費使用,又無需運輸,對環境無任何污染。為人類創造了一種新的生活形態,使社會及人類進入一個節約能源減少污染的時代。
建設太空太陽能發電站的設想早在1968年就有人提出,但直到最近人類才開始真正將之付諸行動。日本可謂此項目的先驅者之一,該項目預計耗資210億美金,發電量能達到十億瓦特,能供29.4萬個家庭使用。在太空建太陽能發電站,無論氣候如何,均可利用太陽能發電,這與在地球上建立太陽能發電站的情況不同。