⑴ 氫能和燃料電池產業爆發前夜,如何突破瓶頸
氫能和燃料電池技術正加速改變著世界能源格局。
「全球能源轉型、汽車轉型共同聚焦於低碳化、綠色化,氫能是實現這兩大領域轉型的重要支撐。」中國電動汽車百人會副理事長兼秘書長張永偉15日在2020氫能產業發展創新峰會上表示,「當前全球主要汽車公司基本上都制定了發展燃料電池汽車的時間表和路線圖。越來越多的國家把氫能作為更重要的未來替代性能源,制定段手陪氫能源、氫產業、氫經濟、氫社會發展的時間表和路線圖。我們離氫的全面應用越來越近。」
劉小詩在百人會《中國氫能產業發展報告2020》中也對產業政策提出了建言:一是針對氫能標准體系不完善的現象,建立健全氫安全基礎研究體系,二是針對各地發展氫能經濟的規劃同質化現象,鼓勵基礎好的地區加速建立示範運營區,鼓勵模式創新,探索多能互補模式,因地制宜,避免低水平重復建設。三是針對產業鏈薄弱環節給予政策激勵。如加大基礎設施建設,出台和落實電解水制氫的電價優惠措施等。四是把握電動汽車與氫燃料電池車錯位互補原則,進行有效資源配置,防止顧此失彼。
從氫的產、儲、運、加、用等全產業鏈出發,依託地方政府、企業、科研院所、平台等多主體,逐步打造「基礎設施配套完善,運營模式成熟、創新成果豐富、資金保障充足、示範效果明顯、生態效應顯著」的氫能產業商業生態圈。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑵ 基於matlab的風電場棄風制氫的手段有哪些
1 基於matlab的風電場棄風制氫的手段主要有以下幾種:
(1) 基於優化演算法的控制策略,通過對風輪機的控制,使得風輪機運轉在最優工況點,以提高風電場的利用效率,進而降低棄風現象,使得制氫成本更低;
(2) 基於智能演算法的控制策略,通過構建神經網路或遺傳演算法等方法,對隱稿槐風電場的能量產生和儲存進行智能化調控,使得風電場的利用效率得以提高,進而降低棄風現象;
(3) 基於系統優化的控制策略,通過對整個風電場系統進行建模和模擬,尋找最優的控制策略,使得制氫成本降低,風電場的能量利用效率得到提升。
2 這些方法的原因是,通過優化演算法、智能演算法和系統優化等方法,能夠有效地提高風電場的能量利用效率,降低棄風現象,從而有助於降低制氫成本,並且有望在未來實現擁有更高的推廣和應用價值。
此外,基於matlab的這些方法敬數具有數據處理和模擬能力,能夠較為客觀地評估風電場的效益,這也使得這些方法成為研究和應用的熱點之一。
3 基於matlab的風電場棄風制氫的手段還可以在模擬實驗過程中,為研究生提供一個很好的實踐平台,有助於提高研究生的理論與實踐能力。
此外,這些方法適用范圍廣泛,不僅可以應用於風能資源豐富地區,也可以在風能資源相對不足的地區通過冷氣和壓縮機等裝置將氫氣壓縮為液態,以便更遠距離傳輸,依舊國內灶友外市場存在巨大的發展潛力。
⑶ 氫燃料電池汽車「未來已來」,怎樣才能先把成本降下來
氫燃料電池汽車“未來已來”,怎樣才能先把成本降下來首先是可以通過研發更新一代的動力電池來降低動力電池的成本,其次就是中國新能源汽車與一些外資企業進行合作開展汽車生產加工來降低成本,再者就是可以讓對應的政府部門給予一些政策優惠,另外就是對應的新能源汽車車企可以少賺一些金額。需要從以下四方面來闡述分析
氫燃料電池汽車“未來已來”,怎樣才能先把成本降下來 。
一、可以通過研發更新一代的動力電池來降低動力電池的成本
首先就是可以通過研發更新一代的動力電池來降低枝旁桐動力電池的成本 ,對於新能源電池動力可以開發更新一代的電池這對於新能源電池的供應起到了很大推進作用,這樣子是非常有利的。
新能源汽車公司應該做到的注意事項:
用科技創新來引領未來。
⑷ 目前制氫的方法有哪些
(1)太陽能電解水制氫。電解水制氫是目前應用較廣且比較成熟的方法,效率較高,但耗電大,用常規電制氫成本比較高。
(2)太陽能熱分解水制氫。將水或水蒸氣加熱到3000K(K是熱力學單位,3000K約等於3273℃)以上,水中的氫和氧便能分解。這種方法制氫效率高,但需要高倍聚光器才能獲得如此高的溫度。
(3)太陽能熱化學循環制氫。在水中加入一種或幾種中間物,然後加熱到較低溫度,經歷不同的反應階段,最終將水分解成氫和氧,而中間物不消耗,可循環使用。產生污染是這種制氫方法的主要問題。
(4)太陽能光化學分解水制氫。這一制氫過程與上述熱化學循環制氫有相似之處,在水中添加某種光敏物質作催化劑,增加對陽光中長波光能的吸收,利用光化學反應制氫。
(5)生物光合作用制氫。科學家發現,蘭綠藻等許多藻類在無氧環境中適應一段時間,在一定條件下都可以進行光合放氫。目前,由於對光合作用和藻類放氫機理了解還不夠,藻類放氫的效率很低,目前還不能實現工業化產氫。
⑸ 氫能源「降成本」為何困難重重
制氫方式決定降成本可能性不高
制氫的常見方式包括:
這是五種常見的制氫方式,第一種的常規燃料指的是天然氣,均為不可再生的化石燃料;很顯然這種方式不能普及,投入巨大的人力物力和財力去研發電動 汽車 ,初衷正是為了減少對常規能源的依賴,同時去減少二氧化碳排放,可是通過這種方式會產生大量的二氧化碳,會加劇溫室效應;且國內天然氣的儲能比較有限,滿足CNG車輛使用都有壓力,更別提去制氫了。
甲醇重整制氫也標記哦常見,上世紀應用的很廣泛,理論上用甲醇制氫確實能做到無排放,但是甲醇可不像江河水一樣隨處可取;制備甲醇主要是以一氧化碳、二氧化碳加壓催化氫化法合成,使用的原料主要是天然氣、石腦油、重油、煤炭和焦炭等,燃料是否清潔不能只看燃料本身,還要看獲取或製造燃料是否存在污染,那麼用甲醇制氫就不是理想選項了,車輛燃燒甲醇也沒有什麼意義。
工業副產品制氫主要是從焦爐煤氣變壓吸附工藝制氫,作為副產物仍舊要去看主體,主體本身不夠清潔也就不用討論氫氣的規模化生產與應用了。水鋁制氫逗笑技術近幾年熱度較高,但這種制氫的方式同樣存在污染的問題,以目前的技術似乎就沒有「清潔制氫」的理想方式,至此似乎決定了氫燃料普及無望,唯一的希望就是「電解水制氫」,然而看起來還是不靠譜。
2021年出現過「拉閘限電」,初衷不論是為了去垃圾產能還是對虛擬幣行業進行打擊,實際上也確實有用電緊張的問題;那麼電解水制氫也就行不通了,電解水可以獲得氫氣,這是個很成熟的制氫方式,但是損耗也特別大。
氫燃料 汽車 不是「用氫氣替代天然氣」,以燃燒氫氣產生熱能的「燃氣車」,本質實際是電動 汽車 。
氫氣加註到氫燃料 汽車 的儲氫罐里,增程模式中為消耗氫氣發電,電流輸入到電池組和電機以實現充電和哪擾驅動車輛行駛;這是典型的「增程式電動 汽車 」,一公斤的氫在車輛上通過燃料電池發電,能轉化出大約20kwh左右的電能。普通代步車高速巡航駕駛的電耗都在20kwh/100km以上,中大型車可以達到30kwh左右,也就是說「百公里氫耗可以達到1.0-2.0kg」。
但是用電解水制備一公斤的氫所消耗的電大約為60kwh左右,那麼跳過「電制氫、氫轉電」的流程,是不是等於這種氫燃料增程電車的實際耗電量達到了60-120kwh/100km左右了呢?實際上就是這樣,這是在浪費有限的電能。
有些說法認為光伏發電、電解水制氫、氫燃料增程的方式可行,這看起來也有些天方夜譚;光伏發電的效率不高,按照 計算的話,1 的發電功率能有200瓦左右就算不錯。假設一台車要加註5kg的氫,制氫需要耗電300kwh左右,想要在一小時內獲得300kwh的電能,需要的是大約1500 的光伏發電板,發電板的成本是相當高的哦。
所以用這種方式制氫的成本也會非常之高,其次儲氫罐的成本也非常高,目前每公斤高壓儲氫的成本在6000元上下,實製造成本極高、儲備和運輸成本極高,這樣車即便量產也用不起,所以氫燃料 汽車 目前看來沒有什麼前景可言。
天和MCN發布,保留版權保護權利
我們單位就有負責製造氫氣的車間,很危險!特愛容易爆炸,有一次爆炸,兩百多公斤的閥門飛出好幾公里!給附近老百姓的房子都震裂了。我們的技術就是燒煤然後產生一氧化碳在通過反應得到氫氣,成本很高。氫氣不易儲存和運輸,還愛爆炸!如果裝到 汽車 上,稍微泄露一點,遇到一點打火就容易爆炸!
2022年,即將到來的北京冬奧會颳起了一陣氫能源的旋風。冬奧會的火炬傳遞,全部採用氫能源。在核心賽區,延慶和張家口投入了700餘輛氫燃料大巴車,李指旦用於日常的交通運輸。
這股「氫旋風」還刮到了A股市場上,氫能源概念紅到發紫,刺激個股頻頻漲停——主營氣體運輸裝備的京城股份,在去年12月份實現了14個漲停板,股價單月飆漲300%;主營高壓容器的石重裝實現了六連板;開發氫能電源產品的動力源,也在上月下旬連續三個漲停板。
這是氫能源在當下火熱的縮影。與其他新能源相比,氫能源不僅儲量大、無污染,還兼具零碳排的特性。每單位質量所蘊含的能量更是石油的3倍、煤炭的4-5倍。除此之外,氫能源應用場景廣泛,氫燃料電池可以供給重載卡車、有軌電車、船舶、無人機、分布式發電等行業;綠色制氫還可消納太陽能和風能發電間歇式、狀態高低起伏不定的問題。
根據中國氫能聯盟的預測,到2025和2035年,我國氫產業產值將分別達到1萬億和5萬億規模。
氫能前景固然廣闊,但落地的困境卻不容忽視。
在國外,日美的氫能源能佔到各自能源總量的10%以上。日本擁有世界上數量最多加氫站,美國則擁有最低廉的氫能源價格,兩國燃料電池應用均已經投入商業銷售。
反觀國內,當前氫能源的佔比只有4%。據未來智庫測算,2020年我國氫能總成本約為60-80元/kg,距離30元/kg的可商用價格相距甚遠。
氫能源價格居高不下,還要追溯到制氫、儲氫和運氫三大環節,它們使我國氫能發展面臨著開局不利、技術瓶頸與規模化約束等重重難題,令「降成本」困難重重。
那麼,氫能降成本難題究竟如何拆解?又如何破解?
01 點歪「 科技 樹」的制氫
中國的能源結構可以歸納為「富煤、貧油、少氣」。這種特殊的結構令中國成了名副其實的「煤炭大國」——大量的化工產業平均每天要消耗掉95萬噸的煤炭資源,同時產生巨量的化工副產物。
這些副產物中,焦爐氣和氯鹼等是極其便利的制氫原料。我國氫能源產業發展的初期,就依託化工生產中的副產物作為主供氫源的原材料,以節省制氫投資,降低成本。
藉助原生資源的優勢,短短幾年間,我國就成為世界第一大產氫國。2020年中國氫氣產量突破2500萬噸,已連續多年位列世界第一。
但成也蕭何,敗也蕭何。
依託化工副產物生產的氫能源,有個致命的問題——不能算作真正的「綠色能源」。
事實上按照制氫工藝的不同,氫能源大體分為 「灰氫」、「藍氫」和「綠氫」三類。其中,藉由對工業副產物進行提純獲取氫氣,俗稱「灰氫」。通過裂解煤炭或者天然氣所得的氫氣,便是「藍氫」。「綠氫」則是通過可再生能源、電解水等方法,實現全程百分之百零碳排、零污染。
「灰氫」和「藍氫」本質上仍然是用化石燃料提供能量,會產生大量的碳排放。相關研究表明,製造「藍氫」所產生的碳足跡,比直接使用天然氣或煤炭取暖高出20%,比使用柴油取暖高出約60%。而「灰氫」的污染還要高出18%-25%。縱使有碳捕捉與封存技術(CCS)降低碳排放,依舊是杯水車薪。
也就是說,要符合氫能源產業零碳排的核心理念,產業界只能期望於綠氫。
但中國的綠氫產能著實少得可憐。由於我國氫能源產業相較歐美日發展較晚,為了在短期內快速發展,我國優先選擇了依託於優勢資源煤炭發展氫產業,其代價便是,「綠氫」制備所需的基礎建設的投資和相關技術遲遲未有發展。2020年,我國灰氫的佔比超過60%,綠氫尚且不足1%。
一筆經濟賬可以看出綠氫與灰氫的成本差距:
在我國,電解水制氫的平均成本是38元/kg,其中電力成本要佔到總成本的50%以上,而使用工業副產物制氫,平均成本僅僅只8-14元/kg。這意味著,工業電價要從當前的0.6kW·h對半折到0.3kW·h以下,綠氫才能在市場上具有競爭性。
但對標歐美日等國家,歐盟的綠氫的成本價低於14元/kg;美國的綠氫在12元/kg左右,而日本的綠氫成本固定在13.2元/kg。
如何讓綠氫從奢侈品行列變成經濟適用型,成為困擾中國氫能產業的一大難題。
而進一步拆分成本,造成綠氫高成本的兩大因素分別是電力消耗量和架設電解槽費用。歐美給出的解答是政府引導+技術革新。
在歐盟,從2020起由政府牽頭投資相繼安裝了6千兆瓦的可再生氫能電解槽,降低企業製造綠氫時電解槽的費用。
在技術上,歐盟摒棄採取工業用電電解水的模式,而使用PEM技術電解制氫。PEM技術的電解池結構緊湊、體積小,這使得其電解槽運行電流密度通常是鹼性水電解槽的4倍以上,效率極高,平均每生產1立方米氫氣可節省1千瓦時的電力。
想要讓這個棵歪掉的「 科技 樹」回到正軌,就需要投入很高的時間成本和資金成本。
去年11月,中石化建成首座PEM氫氣提純設施,其陰極和陽極催化劑、雙極板以及集電器等關鍵核心材料部件均實現國產化,制氫效率達85%以上。而這筆投資的門檻是數十億,研發周期在兩年以上。
寶豐能源也在斥巨資投入綠氫項目。其在互動平台上表示,2021年4月,耗時兩年後,公司首批電解水制氫項目全部投產,預計年產2.4億標方「綠氫」和1.2億標方「綠氧」。據其公開披露數據,近兩年來,寶豐能源在綠氫項目上已投入超過20億元。
除了兩家代表性頭部企業以外,絕大多數中下游的企業,仍在生產灰氫。如何將點歪的灰氫 科技 樹扭轉回綠氫產業,必將需要長時間的產業引導。
02 被「氫脆」卡脖子的儲氫
作為一種化學性質活潑的氣體,氫氣生產之後,需要用一種既安全又經濟的方式儲存起來。儲氫不僅是令我國頭疼的難題,而且在全世界,都沒有很好的解決辦法。
國內的主流方法是採取高壓氣態儲氫。目前,我國儲氫瓶的成本造價在27000元左右,同時配套設施的價格在15萬元,對標美國,儲氫瓶的價格也在22000元左右,略低於中國,但同樣高昂。
高成本源於氫頑皮的特性,學術上稱作「氫脆現象」。
所謂「氫脆」是指,氫氣會在金屬晶粒附近聚集起來,破壞金屬的結構,讓金屬脹氣變脆。氫氣會在金屬內累積成18.7兆帕的高壓,這是地表氣壓187倍。更糟糕的是,氫脆一經產生,就消除不了。
氫脆在 歷史 上引發過嚴重的事故。
1943年1月16日的晚上,俄勒岡州造船廠發出巨響,尚未交付的自由輪一下子斷成了兩半,這在當時引起了巨大的恐慌,眾人都以為是納粹的黑 科技 。
無獨有偶,2013年,世界上最寬的橋,舊金山-奧克蘭海灣大橋為即將到來的通車進行測試。然而僅僅2周,負責把橋面固定在水泥柱上的保險螺栓就出現了裂痕,96個保險螺栓里有30個壞掉了,使得這座大橋幾乎成了廢品。
為了緩解「氫脆」的困擾,全球想出了一種特殊的解決方法——低溫液態儲氫。將氫氣壓縮成液體,能大幅避開氣態氫造成的安全隱患。
學界普遍認為,液氫儲運技術是儲氫技術發展的重要方向。
但目前,我國液氫儲運技術相對落後,缺少大容量、低蒸發率的液氫存儲設備的開發。僅有的一些研究,多聚焦在高壓氣態儲氫方面。
例如,2020年,中科院寧波材料所使用高強高模碳纖維作為儲氫瓶的內膽,大幅提升了儲氫瓶性能。企業方面,京城股份投建了全亞洲最大的高壓儲氫瓶設計測試中心及生產線。
儲氫成本的大山,路漫漫其修遠兮。
03 「爹不疼媽不愛」的運氫
作為氫氣「出廠」前的最後一步,運氫在整個氫能產業鏈中地位舉足輕重。
然而長期以來,我國的氫氣運輸產業處於「爹不疼媽不愛」的境地,沒有系統性的規劃——幾乎所有中央和地方層面的戰略規劃中,都提到了制氫和終端應用環節。
理論上,氫氣運輸產業分為短途和中長途兩種。短途的運輸可依賴長管拖車,中長距離的運輸對成本敏感許多。其中一種經濟的方式,是先將氫氣轉為高密度的液氫狀態再進行運輸。
液氫能適應陸運和海運的模式。在陸運上,液氫儲罐最大容積可達到200立方米,是長管拖車模式的2倍。海運的液氫儲罐最大容積可達到1000立方米,在歐洲和加拿大氫氣運輸中,就均採用液氫海運的模式。
如此重要的液氫在中國卻產能極低。目前,液氫工廠僅有陝西興平、海南文昌、中國航天 科技 集團有限公司第六研究院第101研究所和西昌衛星發射中心等,主要服務於航天發射, 總產能僅有4t/d, 最大的海南文昌液氫工廠產能也僅2t/d。目前, 中國民用液氫市場基本空白。
而對標歐美,美國是全球最大、最成熟的液氫生產和應用地域,擁有15座以上的液氫工廠, 全部是5t/d以上的中大規模,總產能達到375t/d。此外,亞洲有16座液氫工廠, 日本佔了2/3。
另外一種是藉由管道運輸,但現實是,我國氫氣管網嚴重不足,全國累計僅有100km輸氫管道,且主要分布在環渤海灣、長江三角洲等地。在2016年的統計數據,全球共有4542km的氫氣管道,其中美國有2608km的輸氫管道, 歐洲有1598km的輸氫管道。
目前,我國僅僅在《中國氫能產業基礎設施發展藍皮書》提到,期望在2030年建成1000m長的氫氣運輸管道。而對比國外,管道運輸已經開始全面與上下游形成聯動。
例如,德國在北萊茵至威斯特法倫州鋪設的240km的氫氣管道,在給用戶供氫的同時這些氫氣管道也為工業所用。德國Frankfurt的氫氣管道直連加氫站與氯鹼電解工廠,可以免去壓縮機直接供氫。
總結來說,由於上層規劃的缺失,我國氫能運輸仍處於「地方割據」的局面,還未形成規模經濟。
04 破題關鍵詞:液氫
氫能源產業的相關的難題是多方面的,但抽絲剝繭,氫能源產業迫切需要解決的問題集中在存儲和運輸之上。
原理很簡單,「綠氫」的生產技術可以逐步迭代,但氫氣如果不能長期低成本地存儲,生產再多的「綠氫」都是徒增消耗。
此外,氫氣如果不能便捷運輸,氫能的廣泛應用就是無從談起。對照電力行業,正是高壓輸電技術的成熟,電力才能在全國范圍內大規模應用。
而儲氫與運氫問題的源頭,在於液氫。
無論是存儲端的低溫業態儲氫技術,還是中長距離的液氫運輸,都少不了大規模液氫的身影。因此,如何提升液氫產量、開發相關儲運設備,是氫能應用降成本的關鍵。
歐美日氫能產業的發展也能佐證這一點。歐盟早《未來氫能和燃料電池展望總結報告》就提到液氫重要性,同時在液氫方面的投資也從不吝嗇。2021年在法國,一個液氫廠的投資就超過1.5億美元。
美國壟斷了全球85%的液氫生產和應用,根據美國氫能分析中心的統計,在液氫的幫助下,美國的氫能源被大量用於石油化工行業和電子、冶金等行業,兩大行業平均每年要消耗掉82000噸的液氫。
日本則在液氫加氫站方面走在了前列。液氫加氫站具有佔地小,儲量大的優勢,甚至能完成制氫就發生在加氫站里。
目前,日本有建成142座,佔全球加氫站總數的25%,依託於加氫站,日本燃料 汽車 投放使用全球領先,燃料 汽車 的商業化也是全球最好的。
所以,中國的液氫亟需從當前軍用、航天領域,走向大規模民用環節。
思考歐美日液氫的發展歷程,我們有許多借鑒之處,概括而言,包括三點:
一、政策引導,為相關工作提前鋪好路。2021年5月,國家相關部門陸續出台了《氫能 汽車 用燃料液氫》、《液氫生產系統技術規范》和《液氫貯存和運輸技術要求》三個文件,制定了三項國家標准,這將對液氫發展起到關鍵性引領作用。
二、龍頭企業牽頭,建成大規模氫液化系統。液氫生產工廠的建設成本高,必須由龍頭企業率先投產,提高生產規模,才能有效降低單位成本。
三、系統整合相關資源,發揮產學研機製作用。例如,建立政府、研究機構和企業的氫能源產學研合作平台,將科研產品第一時間應用到實際生產當中。
05 結語
世界已進入雙碳時代。國際氫能委員會預計,2050 年氫能源將佔全球能源消耗總量的18%,催生年產值2.5萬億美元的產業。
世界各國對氫能源越發重視,歐美日各國氫能源產業的規劃已經做到了2050年後,並且還在迭代更新;而在我國,自2021年氫能被列為「十四五」規劃重點發展產業後,國家和各地政府迅速出台了400多項政策,規劃了2025年之前的產業發展目標。
一場事關產業政策、技術競技的產業爭霸賽已經打響。
⑹ 我國首個甲醇制氫加氫一體站投用 能耗低/制氫成本大幅下降
上易車App搜索「超級評測」,看專業、硬核、全面的汽車評測內容。
⑺ 如何進一步提高天然氣制氫的環境效益
1.1物料處理單元
物料處理加工單元是傳統氣體加氫工藝的基礎,直接決定了以下枯升氣體的質量和效果。本階段主要依靠二氧化硫通過應用適當的二氧化硫來達到氣體液。但是,由於原料較多,先用離心機壓縮機壓縮,然後處理氣流量,在迴流前完成二氧化硫[1]。提高了聚合流量的效率和質量,實現了第二次熱回收,帶來了可觀的成本節約,同時滿足了能耗要求,並實現了平穩的空氣轉換。
1.2蒸汽轉化裝置
蒸汽轉化單元的過程復雜,水蒸氣作為氧化化學物質受到鎳催化劑的影響,使得能夠轉化為空氣的碳氫化合物燃燒成為可能。轉換鍋爐的不同結構和形狀在換沒宏老熱器和管道緊固方法上存在明顯差異。在此階段,通過溫度轉換和低成本護理技術,與技術參數相比,可以提高資源的能效和經濟絕茄性。
1.3變換裝置
⑻ 氨能轉換成綠氫,新技術可比電解水節省三倍電力,該如何去運用
氫能是一種清潔能源,可以應用到能源、交通、建築、工業等多個領域,按照氫的製取工藝的不同,主要是生產來源和生產過程中的碳排放不同,人們將氫能分別稱為灰氫、藍氫和綠氫。
灰氫和藍氫都是利用天然氣作為原料,生產過程相同,都會產生二氧化碳,只是當二氧化碳直接排放彎歷時,這個過程生產的氫氣就稱作灰氫,如果對產生的二氧化碳進行回收,那麼生產出來的氫氣就稱作藍氫。
最後,還要說一下氫能的運輸,由於氫的儲能密度很低,所以,如果以氫的形式運輸能源就會比運輸化石燃料還要貴,所以目前儲運難也是制約氫能發展的瓶頸之一。
氨比氫更容易液化,在同等條件、標准大氣壓下,液氨在-33℃就能夠實現液化運輸,但如果直接運輸液氫溫度則需要降至-253℃左右。所以,氨可以作為氫的運輸載體,解決儲運難題。
⑼ 怎樣無碳制氫
美國賓夕法尼亞州立大學的電機工程教授格蘭姆斯發現了一種低成本制氫的新方法,將水分解成氫和氧,用普通的鈦和銅分別收集它們。這種方法利用太陽能的整個光譜,並且在水、太陽能和納米二極體的幫助下得以實現。格蘭姆斯和他的研究小組利用兩組不同的納米管光電化學二極體從太陽能中製得了氫。
2008年9月,美國能源部下屬的愛達荷州國家實驗室實現了一個重要里程碑,成功通過高溫電解制氫。當羨豎這個實驗室開始以5.6立方米/時的速度制氫時,標志著制氫技術取得新的進展。光解水制氫兄培大的能量可取自太陽能,這種制氫方法適用於海水和淡水,資源非常豐富,是一種相當有前途的制氫方法。
目前看來,高效率制氫的基本途徑是利用太陽能。如果能用太陽能來制氫,那就等於把無窮無盡的、分散的太陽能轉變成了高度集中的干凈能源了,其意義十分重大。目前利用太陽能分解水制氫的方法有太陽能熱分解水制氫、太陽能發電電解水制氫、陽光催化光解水制氫以及太陽能生物制氫等。太陽能制氫有重大的現實意義,雖然困難較多,但科學家們已經取得了多方面的進展。
當然,我國的科學家們也在不斷地探索和研究制氫技術,並取得了很大的成效,而且我國的生物制氫技術處於國際領先地位。生物制氫思路1966年開始提出,到20世紀90年代受到空前重視。從20世紀90年代開始,德國、日本及美國等一些發達國家成立了專門機構,制訂了生物制氫發展計劃,以期通過對生物制氫技術的基礎性和應用性研究,在21世紀中葉實現工業化生產。但目前研究進程並不理想。
我國哈爾濱工業大學突破了生物制氫技術必須採用純菌種和固定技術的局限,開創了利用非固定化菌種生產氫氣的新途徑,並在2000年首次實現了中試規模連續流長期持續產氫。在此基礎上,他們又先後發現了產氫能力很高的乙醇發酵類型,發明了連續流生物制氫技術反應器,初步建立了生物產氫發酵理論,提出了最佳工程式控制制對策。該技術和理論成果在中試研究中得到了充分驗證:氫氣產氣率比國外同類的中巧小試研究高幾十倍;開發的工業化生物制氫系統工藝運行穩定可靠,且生產成本明顯低於目前廣泛採用的水電解法制氫成本。該項研究在國內外首創並實現了中試規模連續非固定化菌種長期持續生物制氫技術,是生物制氫領域的一項重大突破。
⑽ 如何制氫
你好,很高興為你解答
一、電解水制氫
多採用鐵為陰極面,鎳為陽極面的串聯電解槽(外形似壓濾機)來電解苛性鉀或苛性鈉的水溶液。陽極出氧氣,陰極出氫氣。該方法成本較高,但產品純度大,可直接生產99.7%以上純度的氫氣。這種純度的氫氣常供:①電子、儀器、儀表工業中用的還原劑、保護氣和對坡莫合金的熱處理等,②粉末冶金工業中制鎢、鉬、硬質合金等用的還原劑,③製取多晶硅、鍺等半導體原材料,④油脂氫化,⑤雙氫內冷發電機中的冷卻氣等。像北京電子管廠和科學院氣體廠就用水電解法制氫。
二、水煤氣法制氫
用無煙煤或焦炭為原料與水蒸氣在高溫時反應而得水煤氣(C+H2O→CO+H2—熱)。凈化後再使者羨它與水蒸氣一起通過觸媒令其中的CO轉化成CO2(CO+H2O→CO2+H2)可得含氫量在80%以上的氣體,再壓入水中以溶去CO2,再通過含氨蟻酸亞銅(或含氨乙酸亞銅)溶液中除去殘存的CO而得較純氫氣,這種方法制氫成本較低產量很大,設備較多,在合成氨廠多用此法。有的還把CO與H2合成甲醇,還有少數地方用80%氫的不太純的氣體供人造液體燃料用。像北京化工實驗廠和許多地方的小氮肥廠多用此法。
三、由石油熱裂的合成氣和天然氣制氫
石油熱裂副產的氫氣產量很大,常用於汽油加氫,石油化工和化肥廠所需的氫氣,這種制氫方法在世界上很多國家都採用,在我國的石油化工基地如在慶化肥廠,渤海油田的石油化工基地等都用這方法制氫氣
也在有些地方採用(如美國的Bay、way和Batan Rougo加氫工廠等)。
四、焦爐煤氣冷凍制氫
把經初步提凈的焦爐氣冷凍加壓,使其他氣體液化而剩下氫氣。此法在少數地方採用(如前蘇聯的Ke Mepobo工廠)。
五、電解食鹽水的副產氫
在氯鹼工業中副產多量較純氫氣,除供合成鹽酸外還有剩餘,也可經提純生產普氫或純氫。像化工二廠用的氫氣就是電解鹽水的副產。
六、釀造工業副產
用玉米發酵丙酮、丁醇時,發酵罐的此型廢氣中有1/3以上的氫氣,經多次提純後可生產普氫(97%以上),把普氫通過用液氮冷卻到—100℃以下的硅膠列管中則進一步除去雜質(如少量N2)可製取純氫(99.99%以上),像北京釀酒廠就生產這種副產氫,用來燒制森嫌猜石英製品和供外單位用。
七、鐵與水蒸氣反應制氫
但品質較差,此系較陳舊的方法現已基本淘汰