導航:首頁 > 信息技術 > 什麼是raid磁碟陣列技術

什麼是raid磁碟陣列技術

發布時間:2023-03-19 03:38:10

A. RAID是什麼

分類: 電腦/網路
問題描述:

這個軟體有什麼用

解析:

Raid定義

RAID(Rendant Array of Independent Disk 獨立冗餘磁碟陣列)技術是加州大學伯克利分校1987年提出,最初是為了組合小的廉價磁碟來代替大的昂貴磁碟,同時希望磁碟失效時不會使對數據的訪問受損失而開發出一定水平的數據保護技術。RAID就是一種由多塊廉價磁碟構成的冗餘陣列,在操作系統下是作為一個獨立的大型存儲設備出現。RAID可以充分發揮出多塊硬碟的優勢,可以提升硬碟速度,增大容量,提供容錯功能夠確保數據安全性,易於管理的優點,在任何一塊硬碟出現問題的情況下都可以繼續工作,不會受到損壞硬碟的影響。

二、RAID的幾種工作模式

1、RAID0

即Data Stripping數據分條技術。RAID 0可以把多塊硬碟連成一個容量更大的硬碟群,可以提高磁碟的性能和吞吐量。RAID 0沒有冗餘或錯誤修復能力,成本低山沒伏,要求至少兩個磁碟,一般只是在那些對數據安全性要求不高的情況下才被使用。

(1)、RAID 0最簡單方式

就是把x塊同樣的硬碟用硬體的形式通過智能磁碟控制器或用操作系統中的磁碟驅動程序以軟體的方式串聯在一起,形成一個獨立的邏輯驅動器,容量是單獨硬碟的x倍,在電腦數據寫時被依次寫入到各磁碟中,當一塊磁碟的空間用盡時,數據就會被自動寫入到下一塊磁碟中,它的好處是可以增加磁碟的容量。速度與其中任何一塊磁碟的速度相同,如果其中的任何一塊磁碟出現故障,整個系統將會受到破壞,可靠性是單獨使用一塊硬碟的1/n。

(2)、RAID 0的另一方式

是用n塊硬碟選擇合理的帶區大小創建帶區集,最好是為每一塊硬碟都配備一個專門的磁碟控制器,在電腦數據讀寫時同時向n塊磁碟讀寫數據,速度提升n倍。提高系統的性能。

2、RAID 1

RAID 1稱為磁碟鏡像:把一個磁碟的數據鏡像到另一個磁碟上,在不影響性能情況下最大限度的保證系統的可靠性和可修復性上,具有很高的數據冗餘能力,但磁碟利用率為50%,故成本最高,多用在保存關鍵性的重要數據的場合。RAID 1有以下特點:

(1)、RAID 1的每一個磁碟都具有一個對應的鏡像盤,任何時候數據都同步鏡像,系統可以從一組鏡像盤中的任何一個磁碟讀取數據。

(2)、磁碟所能使用的空間只有磁碟容量總和的一半,系統成本高。

(3)、只要系統中任何一對鏡像盤中至少有一塊磁碟可以使用,甚至可以在一半數量的硬碟出現問題時系統都可以正常運行。

(4)、出現硬碟故障的RAID系統不再可靠,應當及時的更換損壞的硬碟,否則剩餘的鏡像盤也出現問題,那麼整個系統就會崩潰。

(5)、更換新盤後原有數據會需要很長時間同步鏡像,外界對數據的訪問不會受到影響,只是這時整個系統的性能有所下降。

(6)、RAID 1磁碟控制器的負載相當大,用多個磁碟控制器可以提高數據的安全性和可用性。

3、RAID0+1

把RAID0和RAID1技術結合起來,數據除分布在多個盤上逗攜外,每個盤都有其物理鏡像盤,提供全冗餘能力,允許一個以下磁碟故障,而不影響數據可用性,並具有快速讀/寫能力。RAID0+1要在磁碟鏡像中建立帶區集至少4個硬碟。

4、RAID2

電腦在寫入數據時在一個磁碟上保存數據的各個位,同時把一個數據不同的位運算得到的海明校驗碼保存另一組磁碟上,由於海明碼可以在數據發生錯誤的情況下將錯誤校正,以保證輸出的正確。但海明碼使用數據冗餘技術,使得輸出數據的速率取決於驅動器組中速度最慢的磁碟。RAID2控制器的設計簡單。

5、RAID3:帶奇偶校驗碼的並行傳送

RAID 3使用一個專門的磁碟存放所有的校驗數據,而在剩餘的磁碟中創建帶區集分散數據的讀寫操作。當一個完好的RAID 3系統中讀取數據,只需要在數據存儲盤中找到相應的數據塊進行讀取操察讓作即可。但當向RAID 3寫入數據時,必須計算與該數據塊同處一個帶區的所有數據塊的校驗值,並將新值重新寫入到校驗塊中,這樣無形雖增加系統開銷。當一塊磁碟失效時,該磁碟上的所有數據塊必須使用校驗信息重新建立,如果所要讀取的數據塊正好位於已經損壞的磁碟,則必須同時讀取同一帶區中的所有其它數據塊,並根據校驗值重建丟失的數據,這使系統減慢。當更換了損壞的磁碟後,系統必須一個數據塊一個數據塊的重建壞盤中的數據,整個系統的性能會受到嚴重的影響。RAID 3最大不足是校驗盤很容易成為整個系統的瓶頸,對於經常大量寫入操作的應用會導致整個RAID系統性能的下降。RAID 3適合用於資料庫和WEB伺服器等。

6、 RAID4

RAID4即帶奇偶校驗碼的獨立磁碟結構,RAID4和RAID3很象,它對數據的訪問是按數據塊進行的,也就是按磁碟進行的,每次是一個盤,RAID4的特點和RAID3也挺象,不過在失敗恢復時,它的難度可要比RAID3大得多了,控制器的設計難度也要大許多,而且訪問數據的效率不怎麼好。

7、 RAID5

RAID 5把校驗塊分散到所有的數據盤中。RAID 5使用了一種特殊的演算法,可以計算出任何一個帶區校驗塊的存放位置。這樣就可以確保任何對校驗塊進行的讀寫操作都會在所有的RAID磁碟中進行均衡,從而消除了產生瓶頸的可能。RAID5的讀出效率很高,寫入效率一般,塊式的集體訪問效率不錯。RAID 5提高了系統可靠性,但對數據傳輸的並行性解決不好,而且控制器的設計也相當困難。

8、RAID6

RAID6即帶有兩種分布存儲的奇偶校驗碼的獨立磁碟結構,它是對RAID5的擴展,主要是用於要求數據絕對不能出錯的場合,使用了二種奇偶校驗值,所以需要N+2個磁碟,同時對控制器的設計變得十分復雜,寫入速度也不好,用於計算奇偶校驗值和驗證數據正確性所花費的時間比較多,造成了不必須的負載,很少人用。

9、 RAID7

RAID7即優化的高速數據傳送磁碟結構,它所有的I/O傳送均是同步進行的,可以分別控制,這樣提高了系統的並行性和系統訪問數據的速度;每個磁碟都帶有高速緩沖存儲器,實時操作系統可以使用任何實時操作晶元,達到不同實時系統的需要。允許使用SNMP協議進行管理和監視,可以對校驗區指定獨立的傳送信道以提高效率。可以連接多台主機,當多用戶訪問系統時,訪問時間幾乎接近於0。但如果系統斷電,在高速緩沖存儲器內的數據就會全部丟失,因此需要和UPS一起工作,RAID7系統成本很高。

10、 RAID10

RAID10即高可靠性與高效磁碟結構它是一個帶區結構加一個鏡象結構,可以達到既高效又高速的目的。這種新結構的價格高,可擴充性不好。

11、 RAID53

RAID7即高效數據傳送磁碟結構,是RAID3和帶區結構的統一,因此它速度比較快,也有容錯功能。但價格十分高,不易於實現。

個人使用磁碟RAID主要是用RAID0、 RAID1或RAID0+1工作模式。

B. 什麼是RAID技術

RAID(獨立磁碟冗餘陣列)是一種數據存儲虛擬化技術,將多個物理磁碟驅動器組件組合到一個或多個邏輯單元中,以實現數據冗餘和/或提高性能的目的。

數據以多種方式(稱為RAID級別)分布在驅動器上,具體取決於所需的冗餘和性能級別。不同的方案按資料分布布局以單詞「 RAID」命名,後跟一個數字,例如RAID 0或RAID1。每種方案或RAID級別在關鍵目標之間提供了不同的平衡:可靠性、性能和容量。大於RAID 0的RAID級別可提供針對不可恢復的扇區讀取錯誤以及鄭配整個物理驅動器故障的保護。

RAID技術主要具有以下三個基本功能:

(1)通過磁碟數據條帶化,可以實現對數據的塊訪問,減少了磁碟的機械搜索時間,提高了數據訪問速度。

(2)通過同時排列數組中的多個磁碟,可以減少磁碟的機械搜索時間,並提高數據訪問速度。

(3)通過鏡像或存儲同位信息,可以實現數據的冗餘保護。

RAID 0和RAID 1之間的區別:

1. RAID 0讀寫速度快,數組容量是數組磁碟的總容量,無數據備份功能,安全性較差。

2. RAID 1的讀寫速度如單磁碟,容量為單磁碟容量,但磁碟互相備份,安全性高。

RAID 0的特點:

RAID 0的缺點是它不提供數據冗餘,一旦用戶數據損壞,損壞的數據將無法恢復。當RAID中任何硬碟驅動器出現故障時,RAID 0運行都可能導致整個數據損壞。通常不建議企業用戶單獨使用。

RAID 1的特徵:

RAID 1通過硬碟數據鏡像實現數據冗餘,保護數據,在兩個磁碟上生成備份數據,並且在原始數據繁忙時可以直接從鏡像備份中讀取資料,因此RAID 1可以提供讀取性能。

RAID 0

RAID 0由條帶化組成,但沒有鏡像或同位。與跨區卷相比,RAID 0卷的容量是相同的。它是集合中磁碟容量的總和。但是由於條帶化將每個文件的內容分配到集合中的所有磁碟之間,因此任何磁碟的故障都會導致慶叢哪所有檔(整個RAID 0卷)丟失。跨區卷損壞至少可以將檔保留在正常運行的磁碟上。 RAID 0的好處是,對任何檔的讀寫操作的吞吐量都乘以磁碟數量,因為與跨區卷不同,讀寫操作是同時進行的,而且代價是驅動器故障的完全脆弱性。實際上,平均故障率比等效的單個非RAID驅動器高。

RAID 1

RAID 1由數據鏡像組成,沒有同位或分段。數據被相同地寫入兩個驅動器,從而產生驅動器的「鏡像集」。因此,RAID中的任何驅動器均可滿足任何讀取請求。如果將請求廣播到RAID中的每個驅動器,則可以由首先訪問數據的驅動器(根據其查找時間和循環等待時間)對請求進行服務,從而提高性能。如果針對控制器或軟體進行了優化,則持續讀取吞吐量將接近集合中每個驅動器的吞吐量總和。寫入較慢,因為寫入的數據必須更新到每個驅動器,而最慢的驅譽碼動器會限制寫入性能。但只要有一個驅動器正常工作,該數組就會繼續運行。

下面是RAID級別的對比表。

C. 什麼是磁碟陣列(關於RAID的問題)

分類: 電腦/網路 >> 操作系統/系碰槐統故障
問題描述:

RAID說 無任何單獨的磁碟和磁碟陣列附帶任何可用,請檢查是否有磁碟陣列是否有損壞 這是怎麼回事啊.要怎麼作解決?

解析:

磁碟陣列技術

磁碟陣列(DiscArray)是由許多台磁碟機或光碟機按一定的規則,如分條(Striping)、分塊(Declustering)、交叉存取(Interleaving)等組成一個快速,超大容量的外存儲器子系統。它在陣列控制器的控制和管理下,實現快速,並行或交叉存取,並有較強的容錯能力。從用戶觀點看,磁碟陣列雖然是由幾個、幾十個甚至上百個盤組成,但仍可認為是一個單一磁碟,其容量可以高達幾百~上千千兆位元組,因此這一技術廣泛為多媒體系統所歡迎。

盤陣列的全稱是:

RendanArrayofInexpensiveDisk,簡稱RAID技術。它是1988年由美國加州大學Berkeley分校的DavidPatterson教授等人提出來的磁碟冗餘技術。從那時起,磁碟陣列技術發展得很快,並逐步走向成熟。現在已基本得到公認游物的有下面八種系列。

1.RAID0(0級盤陣列)

RAID0又稱數據分塊,即把數據分布在多個盤上,沒有容錯措施。其容量和數據傳輸率是單機容量的N倍,N為構成盤陣列的磁碟機的總數,I/O傳輸速率高,但平均無故障時間MTTF(MeanTimeToFailure)只有單台磁碟機的N分之一,因此零級盤陣列的可靠性最差。

2.RAID1(1級盤陣列)

RAID1又稱鏡像(Mirror)盤,採用鏡像容錯來提高可靠性。即每一個工作盤都有一個鏡像盤,每次寫數據時必須同時寫入鏡像盤,讀數據時只從工作盤讀出。一旦工作盤發生故障立即轉入鏡像盤,從鏡像盤中讀出數據,然後由系統再恢復工作盤正確數據。因此這種方式數據可以重構,但工作盤和鏡像盤必須保持一一對應關系。這種盤陣列可靠性很高,但其有效容量減小到總容量一半以下。因此RAID1常用於對出錯率要求極嚴的應用場合,如財政、金融等領域。

3.RAID2(2級盤陣列)

RAID2又稱位交叉,它採用漢明碼作盤錯檢驗,無需在每個扇區之後進行CRC(CyclicReDundancycheck)檢驗。漢明碼是一種(n,k)線性分組碼,n為碼字的長度,k為數據的位數,r為用於檢驗的位數,故有:n=2r-1r=n-k

因此按位交叉存取最有利於作漢明碼檢驗。這種盤適於大數據的讀寫。但冗餘信息開銷還是太大,阻止了這類盤的廣泛應用。

4.RAID3(3級盤陣列)

RAID3為單盤容錯並行傳輸陣列盤。它的特點是將檢驗盤減小為一個(RAID2校驗盤為多個,DAID1檢驗盤為1比1),數據以位或位元組的方式存於各盤(分散記錄在組內相同扇區號的各個磁碟機上)。它的優點是整個陣列的帶寬可以充分利用,使批量數據傳輸時間減小;其缺點是每次讀寫要牽動整個組,每次只能完成一次I/O。

5.RAID4(4級盤陣列)

RAID4是一種可獨立地對組內各盤進行讀寫的陣列。其校驗盤也只有一個。

RAID4和RAID3的區別是:RAID3是按位或按位元組交叉存取,而RAID4是按塊(扇區)存取,可以單獨地對某個盤進行操作,它無需象RAID3那樣,那怕每一次小I/O操作也要涉及全組,只需涉及組中兩台磁碟機(一台數據盤,一台檢驗盤)即可。從而提高了小量數笑磨友據的I/O速率。

6.RAID5(5級盤陣列)

RAID5是一種旋轉奇偶校驗獨立存取的陣列。它和RAID1、2、3、4各盤陣列的不同點,是它沒有固定的校驗盤,而是按某種規則把其冗餘的奇偶校驗信息均勻地分布在陣列所屬的所有磁碟上。於是在同一台磁碟機上既有數據信息也有校驗信息。這一改變解決了爭用校驗盤的問題,因此DAID5內允許在同一組內並發進行多個寫操作。所以RAID5即適於大數據量的操作,也適於各種事務處理。它是一種快速,大容量和容錯分布合理的磁碟陣列。

7.RAID6(6級盤陣列)

RAID6是一種雙維奇偶校驗獨立存取的磁碟陣列。它的冗餘的檢、糾錯信息均勻分布在所有磁碟上,而數據仍以大小可變的塊以交叉方式存於各盤。這類盤陣列可容許雙盤出錯。

8.RAID7(7級盤陣列)

RAID7是在RAID6的基礎上,採用了cache技術,它使得傳輸率和響應速度都有較大的提高。Cache是一種高速緩沖存儲器,即數據在寫入磁碟陣列以前,先寫入cache中。一般採用cache分塊大小和磁碟陣列中數據分塊大小相同,即一塊cache分塊對應一塊磁碟分塊。在寫入時將數據分別寫入兩個獨立的cache,這樣即使其中有一個cache出故障,數據也不會丟失。寫操作將直接在cache級響應,然後再轉到磁碟陣列。數據從cache寫到磁碟陣列時,同一磁軌的數據將在一次操作中完成,避免了不少塊數據多次寫的問題,提高了速度。在讀出時,主機也是直接從cache中讀出,而不是從陣列盤上讀取,減少與磁碟讀操作次數,這樣比較充分地利用了磁碟帶寬。

這樣cache和磁碟陣列技術的結合,彌補了磁碟陣列的不足(如分塊寫請求響應差等缺陷),從而使整個系統以高效、快速、大容量、高可靠以及靈活、方便的存儲系統提供給用戶,從而滿足了當前的技術發展的需要,尤其是多媒體系統的需要。

解析磁碟陣列的關鍵技術

存儲技術在計算機技術中受到廣泛關注,伺服器存儲技術更是業界關心的熱點。一談到伺服器存儲技術,人們幾乎立刻與SCSI(Small Computer Systems Interface)技術聯系在一起。盡管廉價的IDE硬碟在性能、容量等關鍵技術指標上已經大大地提高,可以滿足甚至超過原有的伺服器存儲設備的需求。但由於Inter的普及與高速發展,網路伺服器的規模也變得越來越大。同時,Inter不僅對網路伺服器本身,也對伺服器存儲技術提出了苛刻要求。無止境的市場需求促使伺服器存儲技術飛速發展。而磁碟陣列是伺服器存儲技術中比較成熟的一種,也是在市場上比較多見的大容量外設之一。

在高端,傳統的存儲模式無論在規模上,還是安全上,或是性能上,都無法滿足特殊應用日益膨脹的存儲需求。諸如存儲區域網(SAN)等新的技術或應用方案不斷涌現,新的存儲體系結構和解決方案層出不窮,伺服器存儲技術由直接連接存儲(DAS)向存儲網路技術(NAS)方面擴展。在中低端,隨著硬體技術的不斷發展,在強大市場需求的推動下,本地化的、基於直接連接的磁碟陣列存儲技術,在速度、性能、存儲能力等方面不斷地邁上新台階。並且,為了滿足用戶對存儲數據的安全、存取速度和超大的存儲容量的需求,磁碟陣列存儲技術也從講求技術創新、重視系統優化,以技術方案為主導的技術推動期逐漸進入了強調工業標准、著眼市場規模,以成熟產品為主導的產品普及期。

回顧磁碟陣列的發展歷程,一直和SCSI技術的發展緊密關聯,一些廠商推出的專有技術,如IBM的SSA(Serial Storage Architecture)技術等,由於兼容性和升級能力不盡如人意,在市場上的影響都遠不及SCSI技術廣泛。由於SCSI技術兼容性好,市場需求旺盛,使得SCSI技術發展很快。從最原始5MB/s傳輸速度的SCSI-1,一直發展到現在LVD介面的160MB/s傳輸速度的Ultra 160 SCSI,320MB/s傳輸速度的Ultra 320 SCSI介面也將在2001年出現(見表1)。從當前市場看,Ultra 3 SCSI技術和RAID(Rendant Array of Inexpensive Disks)技術還應是磁碟陣列存儲的主流技術。

SCSI技術

SCSI本身是為小型機(區別於微機而言)定製的存儲介面,SCSI協議的Version 1 版本也僅規定了5MB/s傳輸速度的SCSI-1的匯流排類型、介面定義、電纜規格等技術標准。隨著技術的發展,SCSI協議的Version 2版本作了較大修訂,遵循SCSI-2協議的16位數據帶寬,高主頻的SCSI存儲設備陸續出現並成為市場的主流產品,也使得SCSI技術牢牢地佔據了伺服器的存儲市場。SCSI-3協議則增加了能滿足特殊設備協議所需要的命令集,使得SCSI協議既適應傳統的並行傳輸設備,又能適應最新出現的一些串列設備的通訊需要,如光纖通道協議(FCP)、串列存儲協議(SSP)、串列匯流排協議等。漸漸地,「小型機」的概念開始弱化,「高性能計算機」和「伺服器」的概念在人們的心目中得到強化,SCSI一度成為用戶從硬體上來區分「伺服器」和PC機的一種標准。

通常情況下,用戶對SCSI匯流排的關心放在硬體上,不同的SCSI的工作模式意味著有不同的最大傳輸速度。如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等。但最大傳輸速度並不代表設備正常工作時所能達到的平均訪問速度,也不意味著不同SCSI工作模式之間的訪問速度存在著必然的「倍數」關系。SCSI控制器的實際訪問速度與SCSI硬碟型號、技術參數,以及傳輸電纜長度、抗干擾能力等因素關系密切。提高SCSI匯流排效率必須關注SCSI設備端的配置和傳輸線纜的規范和質量。可以看出,Ultra 3模式下獲得的實際訪問速度還不到Ultra Wide模式下實際訪問速度的2倍。

一般說來,選用高速的SCSI硬碟、適當增加SCSI通道上連接硬碟數、優化應用對磁碟數據的訪問方式等,可以大幅度提高SCSI匯流排的實際傳輸速度。尤其需要說明的是,在同樣條件下,不同的磁碟訪問方式下獲得的SCSI匯流排實際傳輸速度可以相差幾十倍,對應用的優化是獲得高速存儲訪問時必須關注的重點,而這卻常常被一些用戶所忽視。按4KB數據塊隨機訪問6塊SCSI硬碟時,SCSI匯流排的實際訪問速度為2.74MB/s,SCSI匯流排的工作效率僅為匯流排帶寬的1.7%;在完全不變的條件下,按256KB的數據塊對硬碟進行順序讀寫,SCSI匯流排的實際訪問速度為141.2MB/s,SCSI匯流排的工作效率高達匯流排帶寬的88%。

隨著傳輸速度的提高,信號傳輸過程中的信號衰減和干擾問題顯得越來越突出,終結器在一定程度上可以起到降低信號波反射,改善信號質量的作用。同時,LVD(Low-Voltage Differential)技術的應用也越來越多。LVD工作模式是和SE(Single-Ended)模式相對應的,它可以很好地抵抗傳輸干擾,延長信號的傳輸距離。同時,Ultra 2 SCSI和Ultra 3 SCSI模式也通過採用專用的雙絞型SCSI電纜來提高信號傳輸的質量。

在磁碟陣列的概念中,大容量硬碟並不是指單個硬碟容量大,而是指將單個硬碟通過RAID技術,按RAID 級別組合成更大容量的硬碟。所以在磁碟陣列技術中,RAID技術是比較關鍵的,同時,根據所選用的RAID級別的不同,得到的「大硬碟」的功能也有不同。

RAID是一項非常成熟的技術,但由於其價格比較昂貴,配置也不方便,缺少相對專業的技術人員,所以應用並不十分普及。據統計,全世界75%的伺服器系統目前沒有配置RAID。由於伺服器存儲需求對數據安全性、擴展性等方面的要求越來越高,RAID市場的開發潛力巨大。RAID技術是一種工業標准,各廠商對RAID級別的定義也不盡相同。目前對RAID級別的定義可以獲得業界廣泛認同的只有4種,RAID 0、RAID 1、RAID 0+1和RAID 5。

RAID 0是無數據冗餘的存儲空間條帶化,具有低成本、極高讀寫性能、高存儲空間利用率的RAID級別,適用於Video / Audio信號存儲、臨時文件的轉儲等對速度要求極其嚴格的特殊應用。但由於沒有數據冗餘,其安全性大大降低,構成陣列的任何一塊硬碟損壞都將帶來數據災難性的損失。所以,在RAID 0中配置4塊以上的硬碟,對於一般應用來說是不明智的。

RAID 1是兩塊硬碟數據完全鏡像,安全性好,技術簡單,管理方便,讀寫性能均好。但其無法擴展(單塊硬碟容量),數據空間浪費大,嚴格意義上說,不應稱之為「陣列」。

RAID 0+1綜合了RAID 0和RAID 1的特點,獨立磁碟配置成RAID 0,兩套完整的RAID 0互相鏡像。它的讀寫性能出色,安全性高,但構建陣列的成本投入大,數據空間利用率低,不能稱之為經濟高效的方案。

RAID 5是目前應用最廣泛的RAID技術。各塊獨立硬碟進行條帶化分割,相同的條帶區進行奇偶校驗(異或運算),校驗數據平均分布在每塊硬碟上。以n塊硬碟構建的RAID 5陣列可以有n-1塊硬碟的容量,存儲空間利用率非常高(見圖6)。任何一塊硬碟上數據丟失,均可以通過校驗數據推算出來。它和RAID 3最大的區別在於校驗數據是否平均分布到各塊硬碟上。RAID 5具有數據安全、讀寫速度快,空間利用率高等優點,應用非常廣泛,但不足之處是1塊硬碟出現故障以後,整個系統的性能大大降低。

對於RAID 1、RAID 0+1、RAID 5陣列,配合熱插拔(也稱熱可替換)技術,可以實現數據的在線恢復,即當RAID陣列中的任何一塊硬碟損壞時,不需要用戶關機或停止應用服務,就可以更換故障硬碟,修復系統,恢復數據,對實現HA(High Availability)高可用系統具有重要意義。

各廠商還在不斷推出各種RAID級別和標准。例如更高安全性的,從RAID控制器開始鏡像的RAID;更快讀寫速度的,為構成RAID的每塊硬碟配置CPU和Cache的RAID等等,但都不普及。用IDE硬碟構建RAID的技術是新出現的一個技術方向,對市場影響也較大,其突出優點就是構建RAID陣列非常廉價。目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三個級別,最多支持4塊IDE硬碟。由於受IDE設備擴展性的限制,同時,也由於IDE設備也缺乏熱可替換的技術支持的原因,IDE RAID的應用還不多。

總之,發展是永恆的主題,在伺服器存儲技術領域也不例外。一方面,一些巨頭廠商嘗試推出新的概念或標准,來領導伺服器及存儲技術的發展方向,較有代表性的如Intel力推的IA-64架構及存儲概念;另一方面,致力於存儲的專業廠商以現有技術和工業標准為基礎,推動SCSI、RAID、Fibre Channel等基於現有存儲技術和方案快速更新和發展。在市場經濟條件下,檢驗技術發展的唯一標準是市場的認同。市場呼喚好的技術,而新的技術必須起到推動市場向前發展作用時才能被廣泛接受和承認。隨著高性能計算機市場的發展,高性能比、高可靠性、高安全性的存儲新技術也會不斷涌現。

現在市場上的磁碟陣列產品有很多,用戶在選擇磁碟陣列產品的過程中,也要根據自己的需求來進行選擇,現在列舉幾個磁碟陣列產品,同時也為需要磁碟陣列產品的用戶提供一些選擇。表2列出了幾種磁碟陣列的主要技術指標。

--------------------------------------------------------------------------------

小知識:磁碟陣列的可靠性和可用性

可靠性,指的是硬碟在給定條件下發生故障的概率。可用性,指的是硬碟在某種用途中可能用的時間。磁碟陣列可以改善硬碟系統的可靠性。從表3中可以看到RAID硬碟子系統與單個硬碟子系統的可靠性比較。

此外,在系統的可用性方面,單一硬碟系統的可用性比沒有數據冗餘的磁碟陣列要好,而冗餘磁碟陣列的可用性比單個硬碟要好得多。這是因為冗餘磁碟陣列允許單個硬碟出錯,而繼續正常工作;一個硬碟故障後的系統恢復時間也大大縮短(與從磁帶恢復數據相比);冗餘磁碟陣列發生故障時,硬碟上的數據是故障當時的數據,替換後的硬碟也將包含故障時的數據。但是,要得到完全的容錯性能,計算機硬碟子系統的其它部件也必須有冗餘。

閱讀全文

與什麼是raid磁碟陣列技術相關的資料

熱點內容
手機微信博雲學小程序怎麼登錄 瀏覽:792
口罩出口信息怎麼看 瀏覽:860
產品防偽數碼是什麼意思啊 瀏覽:161
市場營銷有哪些應用 瀏覽:317
花喜代理怎麼加盟 瀏覽:40
信息管理人員經歷了哪些階段 瀏覽:969
仁化汽車配件代理加盟如何 瀏覽:1000
之江生物產品銷量怎麼樣 瀏覽:670
宇花靈技術怎麼用 瀏覽:602
想去泉州賣菜哪個菜市場人流大 瀏覽:411
沈陽雪花酒水怎麼代理 瀏覽:125
rng秘密交易是什麼意思 瀏覽:732
重慶紅糖鍋盔怎麼代理賺錢嗎 瀏覽:383
考察投資項目關注哪些數據 瀏覽:592
家紡傢具都有什麼產品 瀏覽:37
丘氏冰棒產品有哪些 瀏覽:414
程序員如何拉到業務 瀏覽:177
揭陽火車站到炮台市場怎麼走 瀏覽:843
二線國企程序員怎麼提升技能 瀏覽:154
藍翔技術學院西點多少錢 瀏覽:789