『壹』 首款矢量發動機民用火箭成功首飛,圍繞著該火箭我國都開展了哪些創新
穀神星一號運載火箭研發總監劉百奇:因為通過自主設計,我們就能夠從市場出發,可以分析市場上最需要的火箭是什麼樣子的,我們結合自己的設計能力,設計一個更符合市場需求,更滿足客戶需求的火箭,能夠提升它的性能,降低它的成本。
除了快速發射和經濟性的優點以外,未來隨著低軌導航衛星發射需求的不斷增多,在衛星形成網路後可以與我國的北斗系統相結合,進一步提升導航精度。
通過兩個網的信號差分增強,來實現整個地面終端定位精度的一個大幅度提升,現在北斗已經能分清主路,輔路能分清,但是如果到了這種厘米級、分米級定位精度,能夠分清我們是否壓到馬路牙子上面,定位精度是非常高的。
『貳』 發射火箭最主要的技術有哪幾方面
(1)火箭的可靠性
多級火箭間的配合,每級與次級之間的自動分離,各級火箭的適時啟動,都需要極復雜的機構和極縝密的設計,這是一個棘手的問題。火箭是由幾十萬個零部件組成的,即使只有一個零件不可靠,整個火箭就有危險。1960年10月23日,前蘇聯的火箭在發射台上爆炸,使包括導彈部隊司令在內的幾百名軍人和科學家喪生。
即使火箭本身可靠,工作人員也馬虎不得,否則就有可能發生意外事故。1976年美國一火箭操作人員因將一螺母少擰了半圈,使輸入電流不連續從而導致發射失敗。1990年2月,「阿里亞娜」火箭第36次發射時,因為第一級發動機中遺留一小塊抹布而發生爆炸。
(2)長程火箭飛行的穩定性
長程火箭所經歷的區域,從接近地面的濃密大氣層直到近於真空狀態的極稀薄空氣層,其間客觀環境的變化非常劇烈。外界大氣的變化,以及各級火箭在空中的分離啟動,往往使火箭發生劇烈的搖擺、扭動、震顫等種種不良現象,甚至破裂而致火箭於死地。因此如何使火箭在各種不同的環境和情況之下均能保持其相當穩定的飛行,是一項關繫到火箭成敗的關鍵問題之一。
(3)火箭速度的調節
運送繞地衛星的火箭必須能在預定的合適高度達到每秒7.9千米的速度。這一速度既不能偏低,也不宜過高。速度方面百分之一的短缺就可能使衛星跌入大氣層中,因大氣摩擦而結束其生命。可謂差之毫釐,失之千里。過高的速度將使衛星的遠地點離地球過遠,使地面上的追蹤和觀測都比較困難。
(4)火箭的導引
衛星進入軌道時的方向也很關鍵,這一水平方向的兩度誤差就可能使衛星在環繞過程中的某一點距地球過近而使衛星進入生死邊緣。要一顆衛星在遙遠的太空中,能夠在水平方向上准確地進入軌道,需要導航技術的高度精密。
(5)摩擦生熱問題
火箭在飛行的初期,尚未脫離接近地面的濃密氣層,此時它的速度可能已經達到很高。在這種高速飛行中,因大氣摩擦而產生的熱量,足以使火箭的表面溫度升高到1000℃以上。這樣高的溫度足以使許多金屬化為流質。因此,如何選擇適當的抗熱材料來做火箭的外殼,來確保火箭不致在飛出大氣層之前便被焚毀,如何採取散熱的方法和絕熱的裝置來保持火箭內部的適宜溫度,也是此種火箭製造上的困難問題。
當代的運載火箭由箭體、動力系統、飛行控制系統、安全控制系統及通訊測量系統構成。
箭體是火箭的外殼,包括必須的結構,用以包容、支撐推進劑,以及將其他部分聯成一體。它的外觀通常都呈圓柱形。箭體一般包括有效載荷艙、整流罩、氧化劑貯箱、燃料貯箱、儀器箱、級間段、發動機推力結構、尾艙和分支機構。
飛行控制系統由制導系統、姿態控制系統、電源配電系統組成。飛行制導系統控制運載火箭的質心運動,使其按預定彈道飛行,保證有效載荷能准確達到目標位置。姿態控制系統控制運載火箭繞質心的運動及姿態,保持飛行的穩定。電源配電系統除完成供電配電外,還按飛行的程序發出指令。
安全控制系統用於評估火箭飛行的可靠性和安全性,當出現故障時,此系統可以自動報警,如果出現危機情況,還可及時引爆火箭。
通信及測量系統可隨時將火箭飛行中內部各系統的工作情況測量出來並送回地面。以便保持控制中心與火箭的聯系,隨時知道火箭和飛船的飛行狀況和位置。一旦失去聯系,則意味著出現了故障甚至導致發射的失敗。
利用運載火箭發射航天器的工作方式,簡單地說,是每一級各飛一程,逐級加速,最後使運載火箭末級裝載的航天器進入預定軌道。以「長征二號」運載火箭的飛行程序為例:一級發動機點火起飛後7秒開始轉彎,工作130秒後關機;接著二級發動機點火,級間爆炸螺栓起爆,兩級分離,拋出一級箭體,二級箭體繼續飛行112秒後關閉主要發動機,備用發動機繼續推行爬高,176秒後關閉發動機,星箭連接的爆炸螺栓起爆,衛星或其他航天器與運載火箭分離,航天器進入預定軌道。這時飛行高度約為175千米,速度約為每秒7.9千米。
由於研製火箭需要雄厚的經濟基礎和科研隊伍,目前僅有俄羅斯、美國、歐洲空間局、中國、日本等少數國家和地區擁有自己的運載火箭。這些火箭分為大中小三類,有幾十種之多,最大的運載火箭能將120多噸重的航天器送入近地軌道。其中著名的運載火箭有:前蘇聯的「質子號」、「宇宙號」、「天頂號」、「能源號」;歐洲空間局的「阿里亞娜」;美國的「宇宙神」、「大力神」、「土星號」;日本的「H-2」;我國的「長征」系列等。
前蘇聯的「能源號」是一種新型巨型火箭,由液氧/液氫基礎級和4枚液氧/煤油助推器組成,能將10噸有效載荷送入近地軌道,能將32噸和28噸重的有效載荷分別送上月球和金星。
美國的「商業大力神-3」火箭是在「大力神」的基礎上改進的,近地軌道有效載荷運載能力為14噸,具有很強的商業發射適用性。
我國運載火箭的水平與日本相當,其中的「長征三號B」火箭,能把4.8噸有效載荷送入地球軌道。
現代運載火箭一般由2~4級組成。根據運載火箭的不同結構方式,可分為串聯式、並聯式和串並聯式。為載人飛行的運載火箭因其安全性、可靠性要求高,多採用並聯式。
現代航天高科技必將利用火箭為人類走向宇宙鋪設一條更遠、更快、更安全的道路。