❶ 石油鑽井技術
《中國國土資源報》2007年1月29日3版刊登了「新型地質導向鑽井系統研製成功」的消息。這套系統由3個子系統組成:新型正脈沖無線隨鑽測斜系統、測傳馬達及無線接收系統、地面信息處理與決策系統。它具有測量、傳輸和導向三大功能。在研製過程中連續進行了4次地質導向鑽井實驗和鑽水平井的工業化應用,取得成功。這一成果的取得標志著我國在定向鑽井技術上取得重大突破。
2.3.1.1 地質導向鑽井技術
地質導向鑽井技術是20世紀90年代發展起來的前沿鑽井技術,其核心是用隨鑽定向測量數據和隨鑽地層評價測井數據以人機對話方式來控制井眼軌跡。與普通的定向鑽井技術不同之處是,它以井下實際地質特徵來確定和控制井眼軌跡,而不是按預先設計的井眼軌跡進行鑽井。地質導向鑽井技術能使井眼軌跡避開地層界面和地層流體界面始終位於產層內,從而可以精確地控制井下鑽具命中最佳地質目標。實現地質導向鑽井的幾項關鍵技術是隨鑽測量、隨鑽測井技術,旋轉導向閉環控制系統等。
隨鑽測量(MWD)的兩項基本任務是測量井斜和鑽井方位,其井下部分主要由探管、脈沖器、動力短節(或電池筒)和井底鑽壓短節組成,探管內包含各種感測器,如井斜、方位、溫度、震動感測器等。探管內的微處理器對各種感測器傳來的信號進行放大並處理,將其轉換成十進制,再轉換成二進制數碼,並按事先設定好的編碼順序把所有數據排列好。脈沖器用來傳輸脈沖信號,並接受地面指令。它是實現地面與井下雙向通訊並將井下資料實時傳輸到地面的唯一通道。井下動力部分有鋰電池或渦輪發電機兩種,其作用是為井下各種感測器和電子元件供電。井底鑽壓短節用於測定井底鑽壓和井底扭矩。
隨鑽測井系統(LWD)是當代石油鑽井最新技術之一。Schlumberger公司生產的雙補償電阻率儀CDR和雙補償中子密度儀CDN兩種測井系統代表了當今隨鑽測井系統的最高水平。CDR和CDN可以單獨使用也可以兩項一起與MWD聯合使用。LWD的CDR系統用電磁波傳送信息,整套系統安裝在一特製的無磁鑽鋌或短節內。該系統主要包括電池筒、伽馬感測器、電導率測量總成和探管。它主要測量並實時傳輸地層的伽馬曲線和深、淺電阻率曲線。對這些曲線進行分析,可以馬上判斷出地層的岩性並在一定程度上判斷地層流體的類型。LWD的CDN系統用來測量地層密度曲線和中子孔隙度曲線。利用這兩種曲線可以進一步鑒定地層岩性,判斷地層的孔隙度、地層流體的性質和地層的滲透率。
旋轉導向鑽井系統(Steerable Rotary Drilling System)或旋轉閉環系統(Rotary Closed Loop System,RCLS)。常規定向鑽井技術使用導向彎外殼馬達控制鑽井方向施工定向井。鑽進時,導向馬達以「滑行」和「旋轉」兩種模式運轉。滑行模式用來改變井的方位和井斜,旋轉模式用來沿固定方向鑽進。其缺點是用滑行模式鑽進時,機械鑽速只有旋轉模式鑽進時的50%,不僅鑽進效率低,而且鑽頭選擇受到限制,井眼凈化效果及井眼質量也差。旋轉導向閉環鑽井系統完全避免了上述缺點。旋轉導向鑽井系統的研製成功使定向井鑽井軌跡的控制從藉助起下鑽時人工更換鑽具彎接頭和工具面向角來改變方位角和頂角的階段,進入到利用電、液或泥漿脈沖信號從地面隨時改變方位角和頂角的階段。從而使定向井鑽井進入了真正的導向鑽井方式。在定向井鑽井技術發展過程中,如果說井下鑽井馬達的問世和應用使定向鑽井成為現實的話,那麼可轉向井下鑽井馬達的問世和應用則大大提高了井眼的控制能力和自動化水平並減少了提下鑽次數。旋轉導向鑽井系統鑽井軌跡控制機理和閉環系統如圖2.5所示。
目前從事旋轉導向鑽井系統研製的公司有:Amoco、Camco、Baker Hughes Inteq、Cambridge Drilling Automation以及DDD Stabilizers等。這些公司的旋轉導向閉環鑽井系統按定向方法又可分為自動動力定向和人工定向。自動動力定向一般由確定鑽具前進方向的測量儀表、動力源和調節鑽具方向的執行機構組成。人工定向系統定向類似於導向馬達定向方法,需要在每次連接鑽桿時進行定向。兩種定向系統的定向控制原理都是通過給鑽頭施加直接或間接側向力使鑽頭傾斜來實現的(圖2.6)。按具體的導向方式又可劃分為推靠式和指向式兩種。地質導向鑽井技術使水平鑽井、大位移鑽井、分支井鑽井得到廣泛應用。大位移井鑽井技術和多分支井鑽井技術代表了水平鑽井技術的最新成果水平。
圖2.5 旋轉導向閉環系統
(1)水平井鑽井技術
目前,國外水平鑽井技術已發展成為一項常規技術。美國的水平井技術成功率已達90%~95%。用於水平井鑽進的井下動力鑽具近年來取得了長足進步,大功率串聯馬達及加長馬達、轉彎靈活的鉸接式馬達以及用於地質導向鑽井的儀表化馬達相繼研製成功並投入使用。為滿足所有導向鑽具和中曲率半徑造斜鑽具的要求,使用調角度的馬達彎外殼取代了原來的固定彎外殼;為獲得更好的定向測量,用非磁性馬達取代了磁性馬達。研製了耐磨損、抗沖擊的新型水平井鑽頭。
圖2.6 旋轉導向鑽井系統定向軌跡控制原理
(2)大位移井鑽井技術
大位移井通常是指水平位移與井的垂深之比(HD/TVD)≥2的井。大位移井頂角≥86°時稱為大位移水平井。HD/TVD≥3的井稱為高水垂比大位移井。大位移井鑽井技術是定向井、水平井、深井、超深井鑽井技術的綜合集成應用。現代高新鑽井技術,隨鑽測井技術(LWD)、旋轉導向鑽井系統(SRD)、隨鑽環空壓力測量(PWD)等在大位移井鑽井過程中的集成應用,代表了當今世界鑽井技術的一個高峰。目前世界上鑽成水平位移最大的大位移井,水平位移達到10728m,斜深達11287m,該記錄是BP阿莫科公司於1999年在英國Wytch Farm油田M-16井中創造的(圖2.7所示)。三維多目標大位移井也有成功的例子。如挪威Gullfalks油田B29大位移井,就是將原計劃用2口井開發該油田西部和北部油藏的方案改為一口井開采方案後鑽成的。為了鑽成這口井,制定了一套能夠鑽達所有目標並最大限度地減少摩阻和扭矩的鑽井設計方案。根據該方案,把2630m長的水平井段鑽到7500m深度,穿過6個目標區,總的方位角變化量達160°。
圖2.7 M-16井井身軌跡
我國從1996年12月開始,先後在南海東部海域油田進行了大位移井開發試驗,截至2005年底,已成功鑽成21口大位移井,其中高水垂比大位移井5口。為開發西江24-1含油構造實施的8口大位移井,其井深均超過8600m,水平位移都超過了7300m,水垂比均大於2.6,其中西江24-3-A4井水平位移達到了8063m,創造了當時(1997年)的大位移井世界紀錄。大位移井鑽井涉及的關鍵技術有很多,國內外目前研究的熱點問題包括:鑽井設備的適應性和綜合運用能力、大斜度(大於80°)長裸眼鑽進過程中井眼穩定和水平段延伸極限的理論分析與計算、大位移井鑽井鑽具摩擦阻力/扭矩的計算和減阻、成井過程中套管下入難度大及套管磨損嚴重等。此外大位移井鑽井過程中的測量和定向控制、最優的井身剖面(結構)設計、鑽柱設計、鑽井液性能選擇及井眼凈化、泥漿固控、定向鑽井優化、測量、鑽柱振動等問題也處在不斷探索研究之中。
(3)分支井鑽井技術
多分支井鑽井技術產生於20世紀70年代,並於90年代隨著中、小曲率半徑水平定向井鑽進技術的發展逐漸成熟起來。多分支井鑽井是水平井技術的集成發展。多分支井是指在一個主井眼(直井、定向井、水平井)中鑽出若干進入油(氣)藏的分支井眼。其主要優點是能夠進一步擴大井眼同油氣層的接觸面積、減小各向異性的影響、降低水錐水串、降低鑽井成本,而且可以分層開采。目前,全世界已鑽成上千口分支井,最多的有10個分支。多分支井可以從一個井眼中獲得最大的總水平位移,在相同或不同方向上鑽穿不同深度的多層油氣層。多分支井井眼較短,大部分是尾管和裸眼完井,而且一般為砂岩油藏。
多分支井最早是從簡單的套管段銑開窗側鑽、裸眼完井開始的。因其存在無法重入各個分支井和無法解決井壁坍塌等問題,後經不斷研究探索,1993年以來預開窗側鑽分支井、固井回接至主井筒套管技術得到推廣應用。該技術具有主井筒與分支井筒間的機械連接性、水力完整性和選擇重入性,能夠滿足鑽井、固井、測井、試油、注水、油層改造、修井和分層開採的要求。目前,國外常用的多分支系統主要有:非重入多分支系統(NAMLS),雙管柱多分支系統(DSMLS),分支重入系統(LRS),分支回接系統(LTBS)。目前國外主要採用4種方式鑽多分支井:①開窗側鑽;②預設窗口;③裸眼側鑽;④井下分支系統(Down Hole Splitter System)。
2.3.1.2 連續管鑽井(CTD)技術
連續管鑽井技術又叫柔性鑽桿鑽井技術。開始於20世紀60年代,最早研製和試用這一技術鑽井的有法國、美國和匈牙利。早期法國連續管鑽進技術最先進,1966年投入工業性試驗,70年代就研製出各種連續管鑽機,重點用於海洋鑽進。當時法國製造的連續管單根長度達到550m。美國、匈牙利製造的連續管和法國的類型基本相同,單根長度只有20~30m。
早期研製的連續管有兩種形式。一種是供孔底電鑽使用,由4層組成,最內層為橡膠或橡膠金屬軟管的心管,孔底電機動力線就埋設在心管內;心管外是用2層鋼絲和橡膠貼合而成的防爆層;再外層是鋼絲骨架層,用於承受拉力和扭矩;最外層是防護膠層,其作用是防水並保護鋼絲。另一種是供孔底渦輪鑽具使用的,因不需要埋設動力電纜,其結構要比第一種簡單得多。第四屆國際石油會議之後,美國等西方國家把注意力集中在發展小井眼井上,限制了無桿電鑽的發展。連續管鑽井技術的研究也放慢了腳步。我國於20世紀70年代曾開展無桿電鑽和連續管鑽井技術的研究。勘探所與青島橡膠六廠合作研製的多種規格的柔性鑽桿,經過單項性能試驗後,於1975年初步用於渦輪鑽。1978年12月成功用於海上柔性鑽桿孔底電鑽,並建造了我國第一台柔桿鑽機鑽探船。1979~1984年勘探所聯合清華大學電力工程系、青島橡膠六廠研究所和北京地質局修配廠共同研製了DRD-65型柔管鑽機和柔性鑽桿。DRD-65型柔管鑽機主要有柔性鑽桿、Φ146mm潛孔電鑽、鑽塔、柔桿絞車及波浪補償器、泥漿泵、電控系統和液控系統等部分組成。研製的柔性鑽桿主要由橡膠、橡膠布層、鋼絲繩及動力線組成。拉力由柔桿中的鋼絲骨架層承擔,鋼絲繩為0.7mm×7股,直徑2.1mm,每根拉力不小於4350N,總數為134根,計算拉力為500kN,試驗拉力為360kN。鑽進過程中,柔性鑽桿起的作用為:起下鑽具、承受反扭矩、引導沖洗液進入孔底、通過設於柔性鑽桿壁內的電纜向孔底電鑽輸送電力驅動潛孔電鑽運轉、向地表傳送井底鑽井參數等。
柔性鑽桿性能參數為:內徑32mm;抗扭矩不小於1030N·m;外徑85~90mm;單位質量13kg/m;抗內壓(工作壓力)40kg/cm2,曲率半徑不大於0.75m,抗外壓不小於10kg/cm2;彎曲度:兩彎曲形成的夾角不大於120°;額定拉力1000kN;柔桿內埋設動力導線3組,每組15mm2,信號線二根;柔桿單根長度為40、80m兩種規格。
Φ146mm型柔桿鑽機由Φ127mm電動機、減速器、液壓平衡器和減震器組成。動力是潛孔電鑽,它直接帶動鑽頭潛入孔底鑽井。Φ146mm孔底電鑽是外通水式,通水間隙寬5mm,通水橫斷面積為2055mm2。
與常規鑽井技術相比,連續管鑽井應用於石油鑽探具有以下優點:欠平衡鑽井時比常規鑽井更安全;因省去了提下鑽作業程序,可大大節省鑽井輔助時間,縮短作業周期;連續管鑽井技術為孔底動力電鑽的發展及孔底鑽進參數的測量提供了方便條件;在製作連續管時,電纜及測井信號線就事先埋設在連續管壁內,因此也可以說連續管本身就是以鋼絲為骨架的電纜,通過它可以很方便地向孔底動力電鑽輸送電力,也可以很方便地實現地面與孔底的信息傳遞;因不需擰卸鑽桿,因此在鑽進及提下鑽過程中可以始終保持沖洗液循環,對保持井壁穩定、減少孔內事故意義重大;海上鑽探時,可以補償海浪對鑽井船的漂移影響;避免了回轉鑽桿柱的功率損失,可以提高能量利用率,深孔鑽進時效果更明顯。正是由於連續管鑽井技術有上述優點,加之油田勘探需要以及相關基礎工業技術的發展為連續管技術提供了進一步發展的條件,在經過了一段時間的沉寂之後,20世紀80年代末90年代初,連續管鑽井技術又呈現出飛速發展之勢。其油田勘探工作量年增長量達到20%。連續管鑽井技術研究應用進展情況簡述如下。
1)數據和動力傳輸熱塑復合連續管研製成功。這種連續管是由殼牌國際勘探公司與航空開發公司於1999年在熱塑復合連續管基礎上開始研製的。它由熱塑襯管和纏繞在外面的碳或玻璃熱塑復合層組成。中層含有3根銅質導線、導線被玻璃復合層隔開。碳復合層的作用是提供強度、剛度和電屏蔽。玻璃復合層的作用是保證強度和電隔離。最外層是保護層。這種連續管可載荷1.5kV電壓,輸出功率20kW,傳輸距離可達7km,耐溫150℃。每根連續管之間用一種特製接頭進行連接。接頭由一個鋼制的內金屬部件和管子端部的金屬環組成。這種連續管主要用於潛孔電鑽鑽井。新研製的數據和動力傳輸連續管改變了過去用潛孔電鑽鑽井時,電纜在連續管內孔輸送電力影響沖洗液循環的缺點。
2)井下鑽具和鑽具組合取得新進展。XL技術公司研製成功一種連續管鑽井的電動井下鑽具組合。該鑽具組合主要由電動馬達、壓力感測器、溫度感測器和震動感測器組成。適用於3.75in井眼的電動井下馬達已交付使用。下一步設想是把這種新型電動馬達用於一種新的閉環鑽井系統。這種電動井下鑽具組合具有許多優點:不用鑽井液作為動力介質,對鑽井液性能沒有特殊要求,因而是欠平衡鑽井和海上鑽井的理想工具;可在高溫下作業,振動小,馬達壽命長;閉環鑽井時藉助連續管內設電纜可把測量數據實時傳送到井口操縱台,便於對井底電動馬達進行靈活控制,因而可使鑽井效率達到最佳;Sperry sun鑽井服務公司研製了一種連續管鑽井用的新的導向鑽具組合。這種鑽具組合由專門設計的下部陽螺紋泥漿馬達和長保徑的PDC鑽頭組成。長保徑鑽頭起一個近鑽頭穩定器的作用,可以大幅度降低振動,提高井眼質量和機械鑽速。泥漿馬達有一個特製的軸承組和軸,與長保徑鑽頭匹配時能降低馬達的彎曲角而不影響定向性能。在大尺寸井眼(>6in)中進行的現場試驗證明,導向鑽具組合具有機械鑽速高、井眼質量好、井下振動小、鑽頭壽命長、設備可靠性較高等優點。另外還研製成功了一種連續軟管欠平衡鑽井用的繩索式井底鑽具組合。該鑽具組合外徑為in上部與外徑2in或in的連續管配用,下部接鑽鋌和in鑽頭。該鑽具組合由電纜式遙控器、穩定的MWD儀器、有效的電子定向器及其他參數測量和傳輸器件組成。電纜通過連續管內孔下入孔底,能實時監測並處理工具面向角、鑽井頂角、方位角、自然伽馬、溫度、徑向振動頻率、套管接箍定位、程序狀態指令、管內與環空壓差等參數。鑽具的電子方位器能在鑽井時在導向泥漿馬達連續旋轉的情況下測量並提供井斜和方位兩種參數。
其他方面的新進展包括:連續管鑽井技術成功用於超高壓層側鑽;增加連續管鑽井位移的新工具研製成功;連續管鑽井與欠平衡鑽井技術結合打水平井取得好效果;適於連續管鑽井的混合鑽機研製成功;連續管鑽井理論取得新突破。
2.3.1.3 石油勘探小井眼鑽井技術
石油部門通常把70%的井段直徑小於177.8mm的井稱為小井眼井。由於小井眼比傳統的石油鑽井所需鑽井設備小且少、鑽探耗材少、井場佔地面積小,從而可以節約大量勘探開發成本,實踐證明可節約成本30%左右,一些邊遠地區探井可節約50%~75%。因此小井眼井應用領域和應用面越來越大。目前小井眼井主要用於:①以獲取地質資料為主要目的的環境比較惡劣的新探區或邊際探區探井;②600~1000m淺油氣藏開發;③低壓、低滲、低產油氣藏開發;④老油氣田挖潛改造等。
2.3.1.4 套管鑽井技術
套管鑽井就是以套管柱取代鑽桿柱實施鑽井作業的鑽井技術。不言而喻套管鑽井的實質是不提鑽換鑽頭及鑽具的鑽進技術。套管鑽井思想的由來是受早期(18世紀中期鋼絲繩沖擊鑽進方法用於石油勘探,19世紀末期轉盤回轉鑽井方法開始出現並用於石油鑽井)鋼絲繩沖擊鑽進(頓鑽時代)提下鑽速度快,轉盤回轉鑽進井眼清潔且鑽進速度快的啟發而產生的。1950年在這一思想的啟發下,人們開始在陸上鑽石油井時,用套管帶鑽頭鑽穿油層到設計孔深,然後將管子固定在井中成井,鑽頭也不回收。後來,Sperry-sun鑽井服務公司和Tesco公司根據這一鑽井原理各自開發出套管鑽井技術並制定了各自的套管鑽井技術發展戰略。2000年,Tesco公司將4.5~13.375in的套管鑽井技術推向市場,為世界各地的油田勘探服務。真正意義的套管鑽井技術從投放市場至今還不到10年時間。
套管鑽井技術的特點和優勢可歸納如下。
1)鑽進過程中不用起下鑽,只利用絞車系統起下鑽頭和孔內鑽具組合,因而可節省鑽井時間和鑽井費用。鑽進完成後即等於下套管作業完成,可節省完井時間和完井費用。
2)可減少常規鑽井工藝存在的諸如井壁坍塌、井壁沖刷、井壁鍵槽和台階等事故隱患。
3)鑽進全過程及起下井底鑽具時都能保持泥漿連續循環,有利於防止鑽屑聚集,減少井涌發生。套管與井壁之間環狀間隙小,可改善水力參數,提高泥漿上返速度,改善井眼清洗效果。
套管鑽井分為3種類型:普通套管鑽井技術、階段套管或尾管鑽井技術和全程套管鑽井技術。普通套管鑽井是指在對鑽機和鑽具做少許改造的基礎上,用套管作為鑽柱接上方鑽桿和鑽頭進行鑽井。這種方式主要用於鑽小井眼井。尾管鑽井技術是指在鑽井過程中,當鑽入破碎帶或涌水層段而無法正常鑽進時,在鑽柱下端連接一段套管和一種特製工具,打完這一段起出鑽頭把套管留在井內並固井的鑽井技術。其目的是為了封隔破碎帶和水層,保證孔內安全並維持正常鑽進。通常所說的套管鑽井技術是指全程套管鑽井技術。全程套管鑽井技術使用特製的套管鑽機、鑽具和鑽頭,利用套管作為水利通道,採用繩索式鑽井馬達作業的一種鑽井工藝。目前,研究和開發這種鑽井技術的主要是加拿大的Tesco公司,並在海上進行過鑽井,達到了降低成本的目的。但是這種鑽井技術目前仍處於研究完善階段,還存在許多問題有待研究解決。這些問題主要包括:①不能進行常規的電纜測井;②鑽頭泥包問題嚴重,至今沒有可靠的解決辦法;③加壓鑽進時,底部套管會產生橫向振動,致使套管和套管接頭損壞,目前還沒有找到解決消除或減輕套管橫向振動的可靠方法;④由於套管鑽進不使用鑽鋌,加壓困難,所以機械鑽速低於常規鑽桿鑽井;部分抵消了套管鑽進提下鑽節省的時間;⑤套管鑽井主要用於鑽進破碎帶和涌水地層,其應用范圍還不大。
我國中石油系統的研究機構也在探索研究套管鑽井技術,但至今還沒有見到公開報道的成果。目前,套管鑽井技術的研究內容,除了研製專用套管鑽機和鑽具外,重點針對上述問題開展。一是進行鑽頭的研究以解決鑽頭泥包問題;二是研究防止套管橫向振動的措施;三是研究提高套管鑽井機械鑽速的有效辦法;四是研究套管鑽井固井辦法。
套管鑽井應用實例:2001年,美國謝夫隆生產公司利用加拿大Tesco公司的套管鑽井技術在墨西哥灣打了2口定向井(A-12和A-13井)。兩井成井深度分別為3222×30.48cm和3728×30.48cm。為了進行對比分析,又用常規方法打了一口A-14井,結果顯示,同樣深度A-14井用時75.5h,A-13井用時59.5h。表層井段鑽速比較,A-12 井的平均機械鑽速為141ft/h,A-13井為187ft/h,A-14井為159ft/h。這說明套管鑽井的機械鑽速與常規方法機械鑽速基本相同。但鑽遇硬地層後套管鑽井,鑽壓增加到6.75t,致使擴眼器切削齒損壞,鑽速降低很多。BP公司用套管鑽井技術在懷俄明州鑽了5口井。井深為8200~9500ft,且都是從井口鑽到油層井段。鑽進過程中遇到了鑽頭泥包和套管振動問題。
此外,膨脹套管技術也是近年來發展起來的一種新技術,主要用於鑽井過程中隔離漏失、涌水、遇水膨脹縮經、破碎掉塊易坍塌等地層以及石油開采時油管的修復。勘探所與中國地質大學合作已立項開展這方面的研究工作。
2.3.1.5 石油鑽機的新發展
國外20世紀60年代末研製成功了AC-SCR-DC電驅動鑽機,並首先應用於海洋鑽井。由於電驅動鑽機在傳動、控制、安裝、運移等方面明顯優於機械傳動鑽機,因而獲得很快的發展,目前已經普遍應用於各型鑽機。90年代以來,由於電子器件的迅速發展,直流電驅動鑽機可控硅整流系統由模擬控制發展為全數字控制,進一步提高了工作可靠性。同時隨著交流變頻技術的發展,交流變頻首先於90年代初成功應用於頂部驅動裝置,90年代中期開始應用於深井石油鑽機。目前,交流變頻電驅動已被公認為電驅動鑽機的發展方向。
國內開展電驅動鑽機的研究起步較晚。蘭州石油化工機器廠於20世紀80年代先後研製並生產了ZJ60D型和ZJ45D型直流電驅動鑽機,1995年成功研製了ZJ60DS型沙漠鑽機,經應用均獲得較好的評價。90年代末期以來,我國石油系統加大鑽機的更新改造力度,電驅動鑽機取得了較快發展,寶雞石油機械廠和蘭州石油化工機器廠等先後研製成功ZJ20D、ZJ50D、ZJ70D型直流電驅動鑽機和ZJ20DB、ZJ40DB型交流變頻電驅動鑽機,四川油田也研製出了ZJ40DB交流變頻電驅動鑽機,明顯提高了我國鑽機的設計和製造水平。進入21世紀,遼河油田勘探裝備工程公司自主研製成功了鑽深能力為7000m的ZJ70D型直流電驅動鑽機。該鑽機具有自動送鑽系統,代表了目前我國直流電驅動石油鑽機的最高水平,整體配置是目前國內同類型鑽機中最好的。2007年5月已出口亞塞拜然,另兩部4000m鑽機則出口運往巴基斯坦和美國。由寶雞石油機械有限責任公司於2003年研製成功並投放市場的ZJ70/4500DB型7000m交流變頻電驅動鑽機,是集機、電、數字為一體的現代化鑽機,採用了交流變頻單齒輪絞車和主軸自動送鑽技術和「一對一」控制的AC-DC-AC全數字變頻技術。該型鑽機代表了我國石油鑽機的最新水平。憑借其優良的性能價格比,2003年投放市場至今,訂貨已達83台套。其中美國、阿曼、委內瑞拉等國石油勘探公司訂貨達42台套。在國內則佔領了近2~3年來同級別電驅動鑽機50%的市場份額。ZJ70/4500DB型鑽機主要性能參數:名義鑽井深度7000m,最大鉤載4500kN,絞車額定功率1470kW,絞車和轉盤擋數I+IR交流變頻驅動、無級調速,泥漿泵型號及台數F-1600三台,井架型式及有效高度K型45.5m,底座型式及檯面高度:雙升式/旋升式10.5m,動力傳動方式AC-DC-AC全數字變頻。
❷ 勘探領域技術有哪些
目前我國已形成了以我國陸相沉積盆地為特色的石油、天然氣地質理論及研究方法,居世界領先水平,其具體內容包括如下幾方面。
(1)中國裂谷盆地有機地球化學和成烴理論,包括成烴母質類型及豐度、熱演化機理與成烴門限、排驅條件及生烴資源定量評價等。近年來提出了低熟油、未熟油和煤成油的成烴理論,研究發展了有機演化實驗與計算機技術相結合的烴源岩快速定量評價技術,把陸相生油機理發展為系列化理論。
(2)天然氣形成理論,包括煤成氣理論以及生物氣、無機氣形成理論,發展了天然氣蓋層綜合評價及封存箱、深盆氣等氣藏理論。
(3)陸相地層學、沉積及儲層評價方法與理論。運用層序地層學、古生物學與地球化學、地質事件學相結合,現代沉積、古代沉積與岩相古地理學相結合,與沉積作用和成岩與後生作用相結合的理論和方法,研究地層劃分對比、沉積類型和結構以及油氣儲層定量評價。
(4)沉積盆地構造演化理論,把大陸板塊構造理論與盆地演化理論相結合,形成了我國東部拉張型裂谷盆地、西部擠壓型克拉通盆地與前陸盆地形成的理論和應用方法。
(5)油氣藏形成與油氣系統理論,綜合油氣地質各學科、專業以及成果,形成了中國陸相沉積盆地復式油氣藏形成理論、隱蔽油藏形成理論,探索了海相剋拉通多旋迴盆地成藏理論,初步形成定量、動態成藏模型及油氣系統的研究方法。
但是,在成盆研究方面,國外從全球板塊構造的演化,分析盆地的形成時間(定時)和所處古緯度的位置(定位),來評價盆地的油氣資源潛力方面較先進。而國內以盆地為油氣生成、運移、聚集的基本地質單元,多年來僅限於研究盆地內的建造與改造,缺乏從全球板塊演化角度研究盆地形成的定時定位問題。另外,盆地分析的基本方法我們都已掌握,差距主要表現在進行項目研究的人員組織和配合上,即缺乏綜合研究的管理能力。
在成烴方面,我國和國外的研究側重點不一樣,國外以海相地層為主,研究較系統,對陸相烴源岩和海相交互相烴源岩(煤系地層)及低—未熟油研究相對較少。而我國以陸相烴源岩為主,研究較系統,對煤成烴和低—未熟油研究也具特色。在海相烴源岩的研究起步較晚,與國外有差距。
在成藏方面,國外主要以含油氣系統、封存箱和異常壓力帶理論研究成藏機理,對成藏條件和過程的綜合評價還處於起步階段。我國在利用先進的模擬實驗裝置,進行油氣成藏物理模擬綜合研究方面取得了重大進展,已居於國際先進水平。
在含油氣系統方面,國外對含油氣系統的研究正在向動態描述和定量化方向發展,國外大油公司已開始建立全球含油氣系統資料庫,用於全球范圍的類比和評價。而我國與國外對比,差距是對油氣系統理解的深度、工作的規范化和創新不夠。
地質理論領域的發展趨勢包括如下幾個方面,即深化研究盆地演化與資源評價技術,發展油氣藏成藏機理及預測技術,其發展趨勢不僅僅局限於海洋石油或者陸地石油,對於我國的石油工業具有重要意義。
一、盆地演化與資源評價方面
沉積盆地作為油氣聚集的重要單元,從早期關注盆地類型到後期探討盆地形成的動力學機制,都取得了明顯進展。由於盆地的形成與其周緣造山帶的演化具有內在關聯性,因此,盆地-山脈耦合作用的研究成為更深層次探討盆地發育演化的重要內容並取得新的認識。對於經過多期成盆改造的疊合盆地優質烴源岩的分布及其在復雜演化過程中的生烴機理及評價指標體系,資源評價方法等方面都有實質性進展。該方面需要發展的技術包括:(1)含油氣沉積盆地形成的動力學機制研究;(2)復雜地質條件下的生烴機理及熱演化史研究;(3)油氣資源分布及潛力評價。
在該方面的發展趨勢為:從大陸動力學的角度探討殼-幔相互作用、盆地-山脈耦合作用,恢復復雜演化盆地的原型;烴源岩的分布及其生烴機理,熱演化史恢復為資源評價提供更為可靠的基礎;在利用定量盆地模擬和油氣資源評價的方法確定了油氣資源分布、明確可採油氣資源、評價油氣資源有效性的基礎上,明確圈閉發育的地質規律,通過油氣成藏要素的綜合研究來勘探油氣資源是今後開發利用油氣資源的方向。
二、油氣成藏機理與預測方面
油氣成藏機理一直是石油與天然氣地質學研究的核心和難點。近年來,油氣成藏從宏觀上溫度場、壓力場、應力場(三場)對油氣分布的控製作用,到微觀上油氣成藏的動力、油氣運移的輸導體系等方面的研究都有顯著進展,特別是發現有別於傳統油氣成藏概念的突發式成藏的發現,豐富了油氣成藏理論。隨著油氣勘探向復雜條件拓展,成藏機理研究出現了下列發展趨勢。
(1)隱蔽油氣藏的成藏機理受到高度重視並建立了不同類型盆地隱蔽圈閉分布模式:隨著構造油氣藏勘探程度的提高,隱蔽油氣藏成為很多盆地的主要勘探領域。隱蔽圈閉的研究是隱蔽油氣藏成藏機理研究的基礎,研究的方向包括層序地層學方法及其拓展應用,地層岩性圈閉的油氣成藏條件綜合研究,針對不同沉積盆地類型建立層序地層模型和隱蔽圈閉預測模型,工業化的地層岩性圈閉綜合評價及其應用等方面的技術將得到深入研究與發展。
(2)海相碳酸鹽岩層系復雜介質(基質孔隙—裂隙網路—溶洞復雜體系)的油氣運移聚集機理成為國際研究前沿:近年來,砂岩孔隙介質中油氣和流體的運移過程和機理得到高度重視,國內外學者進行了大量模擬實驗、數值模擬和實例分析,目前,碳酸鹽岩層系復雜輸導介質條件下流體流動和油氣運移的研究尚十分薄弱,其關鍵科學問題包括不同復雜程度的輸導介質中流體和油氣的運移方式(線性、非線性)和速率、碳酸鹽岩層系油氣的優勢運移通道及其控制因素和示蹤技術。
(3)油氣藏的調整改造和保存機理成為制約復雜疊合盆地油氣勘探的重大難題:隨著油氣勘探由單旋迴盆地向復雜疊合盆地拓展,「定凹探邊」的傳統勘探思路已難以有效地指導疊合盆地的油氣勘探。多期構造疊加、多套源岩多期生排烴、多期成藏、多期調整、改造甚至破壞是疊合盆地油氣成藏的最重要特徵。從多期構造的疊加、干涉特別是晚期構造對早期構造的疊加改造入手,以多元多期生烴作用和輸導體系的演化研究為基礎,以油氣藏的調整改造過程為核心,研究疊合盆地油氣成藏機理和分布規律並發展相應的預測、評價技術,是疊合盆地油氣勘探迫切需要解決的重大難題,也是油氣成藏機理研究的又一重要前沿研究領域。
(4)強化系統論思想和歷史分析方法在油氣成藏與分布預測研究中的應用:含油氣系統是與一個有效的生烴灶相聯系的烴類流體系統,包括了油氣藏形成所必需的一切地質要素與地質過程及在成因上相關的所有油氣。含油氣系統理論實際上體現了對油氣成藏規律進行動力學綜合分析的思想和研究方法。通過對油氣成藏條件和成藏作用相關學科的深入研究,含油氣系統及理論和方法逐步完善,主要表現在盆地動力學過程與含油氣系統演化、油氣運移機理、油氣成藏年代學及流體歷史分析、盆地熱體制及熱流體活動、斷層對流體的封閉和疏導作用、盆地流體流動樣式與成藏效應、成藏動力機制分析等方面。
(5)從盆地動力學背景分析油氣藏形成條件:1990年代以來,國際上含油氣盆地的研究進入動力學研究階段,對盆地演化、大陸造山與深部過程及三者之間耦合關系的動力學研究構成了地球動力學研究的前沿領域。其中,岩石圈深部過程與近地表構造過程耦合的精細描述更是成為近年的研究熱點和難點。
(6)開展烴源灶形成演化與油氣成藏期次研究:烴源灶(source kitchen)是含油氣系統的核心,它是油氣藏形成過程中實際提供烴源的區域。混源油氣識別及油氣的成因是解析復雜油氣藏最基本的問題。對於復雜疊合盆地多期混源油氣成藏,開展混源油氣對比、釐定油氣成藏期次,進而開展有利富集區預測,依然是今後研究的重點。
三、地震技術發展趨勢
油氣藏地球物理探測理論與技術發展經歷了不同階段:(1)地質構造成像;(2)岩性及物性參數識別;(3)儲層中流體類型識別。
由於地球物理場對地質目標性質的反應能力差異,地球物理探測理論與技術最廣泛的用途是地質構造成像,其次是儲層識別,再者是流體識別。理論與技術發展成熟度、結果置信度的次序也是如此。所以油氣藏地球物理探測總體發展趨勢是從構造成像向儲層識別和流體性質識別發展。
同時,復雜地區油氣勘探的地球物理技術和地球物理信息在油氣田開發中的應用是油氣地球物理探測理論與技術發展急需解決的兩個根本問題,前者是如何尋找新的油氣田;後者是解決如何在已經投入開發的油氣田中盡量經濟有效地提高油氣採收率問題。地球物理探測技術的發展依賴於三個基本科學問題的解決,也反映了地球物理探測理論的發展方向。
(1)揭示復雜勘探目標的地球物理場響應特徵:地球物理場響應特徵是探測和識別地質體空間展布、物理參數和所含流體類型的基礎。現行地球物理勘探理論是以均勻介質或水平層狀介質等簡單地質模型的地球物理響應特徵為基礎所建立發展起來的,顯然已無法適應目前復雜地表、復雜構造、復雜儲層油氣勘探開發的需要。剖析復雜地表、復雜構造、復雜儲層的地質特徵可歸納為幾何尺度與地球物理探測波長相當的基本地質單元,以基本地質單元為塊體,構建地球介質的塊體地質模型,以期突破現行地球物理所依託的均勻介質或水平層狀介質模型的理論范疇(K.M.Hock,1996)。對於遠小於地球物理探測波長的地質目標可用統計方法研究其響應特徵,如岩心分析與模擬等,對於遠大於地球物理探測波長的地質目標可用漸近解理論研究,如地震波和電磁波的射線理論,對於近於地球物理探測波長量級的地質目標尚缺乏成熟的理論,且缺乏對該量級地質目標的地球物理場響應特徵的系統認識。通過物理和數值模擬的深化研究,認識該尺度下復雜地質體的地球物理響應特徵,揭示含流體岩石的地球物理場變化規律,為復雜勘探目標的識別奠定基礎(Nur等,1995)。
(2)復雜地表和復雜地質條件下地震波傳播與成像理論:地震成像是利用在地面觀測到的地震波場數據,藉助於波場的反向傳播,實現波場向地下延拓,來推斷地下地質體的空間展布與物理屬性。描述波場反向傳播的單程波動方程是地震波成像的基礎,單程方程描述波場沿特定方向的傳播規律,是波動方程的近似解。現行單程波動方程的構建和解法可分為兩類,其一是波動方程的差分解,其二是波動方程的積分解。波動方程差分解的差分格式構建是以多種域內波動方程的單點泰勒展開為基礎的,僅能准確描述泰勒展開點周圍塊體中地震波的傳播規律,波動方程積分解是以高頻漸近解為基礎而實現的,僅能描述遠大於波長尺度的塊體中地震波的傳播規律。因此,兩類方法對近於波長尺度的塊體均無法准確成像。借鑒辛幾何和黎曼幾何的研究成果,構建准確描述整個空間內波傳播規律的單程波動方程,以此為基礎,深化雜訊壓制理論研究,發展復雜地質體地震波成像理論與技術,已成為油氣地球物理勘探的重要發展趨勢。
(3)由單一地球物理方法向綜合地球物理方法發展:不同的地球物理信息從不同側面反映了地質體特徵,為實現地下地質目標的完整刻畫,需綜合多種信息。不同地球物理信息在反映地質體時存在著尺度和物理屬性的內在差異,如何利用不同尺度、不同類型信息實現同一地質體物理屬性的最佳一致性估計,是地球物理信息融合的基礎,是實現地質目標綜合地球物理研究的途徑。地球物理探測作為反問題,多種信息的綜合利用,可大幅度減弱其不適定性、降低其多解程度。以復雜地質目標的地球物理場響應特徵為基礎,借鑒信息融合理論的研究成果,研究地球物理數據融合的實現途徑,為復雜油氣藏的綜合地球物理解譯奠定理論基礎。
❸ 油氣勘探技術有哪些
油氣勘探,是指為了識別勘探區域,探明油氣儲量而進行的地質調查、地球物理勘探、鑽探及相關活動,是油氣開採的第一個關鍵環節。
包括的技術主要有:野外地質調查,地球物理勘探(重力、磁力、電法及地震勘探),地球化學勘探,鑽井,礦場地球物理測井,地質錄井和地層測試等。
具體你可以搜一下地質勘查方面的介紹或專業書籍