A. 三維掃描儀的工作原理是怎麼樣的
三維掃描儀的基本工作原理是:採用一種結合結構光技術、相位測量技術、計算機視覺技術的復合三維非接觸式測量技術。採用這種測量原理,使得對物體進行照相測量成為可能,所謂照相測量,就是類似於照相機對視野內的物體進行照相,不同的是照相機攝取的是物體的二維圖象,而研製的測量儀獲得的是物體的三維信息。與傳統的三維掃描儀不同的是,該掃描儀能同時測量一個面。測量時光柵投影裝置投影數幅特定編碼的結構光到待測物體上,成一定夾角的兩個攝像頭同步採得相應圖象,然後對圖象進行解碼和相位計算,並利用匹配技術、三角形測量原理,解算出兩個攝像機公共視區內像素點的三維坐標。
至於具體的三維掃描儀產品可以訪問威布三維官網查看。
B. 三維測量技術的方法及應用
三維測量,顧名思義就是被測物進行全方位測量,確定被測物的三維坐標測量數據。其測量原理分為測距、角位移、掃描、定向四個方面。根據三維技術原理研發的儀器包括拍照式(結構光)三維掃描儀、激光三維掃描儀和三坐標測量機三種測量儀器。
三維測量可定義為「一種具有可作三個方向移動的探測器,可在三個相互垂直的導軌上移動,此探測器以接觸或非接觸等方式傳送訊號,三個軸的位移測量系統 經數據處理器或計算機等計算出工件的各點坐標(X、Y、Z)及各項功能的測量」。 三維測量的測量功能應包括尺寸精度、定位精度、幾何精度及輪廓精度等。
1.將被測物體置於三坐標測量空間,可獲得被測物體上各測點的坐標位置,這項技術就是三坐標測量機的原理。三坐標測量機是測量和獲得尺寸數據的最有效的方法之一,可以替代多種表面測量工具,減少復雜的測量任務所需的時間,為操作者提供關於生產過程狀況的有用信息。
2.三維激光掃描儀是通過發射激光來掃描被測物,以獲取被測物體表面的三維坐標。三維激光掃描技術又被稱為實景復制技術,具有高效率、高精度的測量優勢。有人說,三維激光掃描是繼GPS技術以來測繪領域的又一次技術革命。三維激光掃描儀被廣泛應用於結構測量、建築測量、船舶製造、鐵路以及工程的建設等領域,近些年來,三維激光掃描儀已經從固定朝移動方向發展,最具代表性的就是車載三維激光掃描儀和機載三維激光雷達。
3.拍照式三維掃描儀採用一種結合結構光技術、相位測量技術、計算機視覺技術的復合三維非接觸式測量技術。這種測量原理,使得對物體進行照相測量成為可能。所謂拍照測量,就是類似於照相機對視野內的物體進行照相,不同的是照相機攝取的是物體的二維圖象,而研製的測量儀獲得的是物體的三維信息。
機械、汽車、航空、軍工、傢具、工具原型等測量高精度的幾何零部件以及測量復雜形狀的機械零部件。
三維測量技術的應用領域:
三維激光掃描技術不斷發展並日漸成熟,三維掃描設備也逐漸商業化,三維激光掃描儀的巨大優勢就在於可以快速掃描被測物體,不需反射棱鏡即可直接獲得高精度的掃描點雲數據。這樣一來可以高效地對真實世界進行三維建模和虛擬重現。因此,其已經成為當前研究的熱點之一,並在文物數字化保護、土木工程、工業測量、自然災害調查、數字城市地形可視化、城鄉規劃等領域有廣泛的應用。
(1)測繪工程領域:大壩和電站基礎地形測量、公路測繪,鐵路測繪,河道測繪,橋梁、建築物地基等測繪、隧道的檢測及變形監測、大壩的變形監測、隧道地下工程結構、測量礦山及體積計算。
(2)結構測量方面:橋梁改擴建工程、橋梁結構測量、結構檢測、監測、幾何尺寸測量、空間位置沖突測量、空間面積、體積測量、三維高保真建模、海上平台、測量造船廠、電廠、化工廠等大型工業企業內部設備的測量;管道、線路測量、各類機械製造安裝。
(3)建築、古跡測量方面:建築物內部及外觀的測量保真、古跡(古建築、雕像等)的保護測量、文物修復,古建築測量、資料保存等古跡保護,遺址測繪,贗品成像,現場虛擬模型,現場保護性影像記錄。
(4)緊急服務業:反恐怖主義,陸地偵察和攻擊測繪,監視,移動偵察,災害估計,交通事故正射圖,犯罪現場正射圖,森林火災監控,滑坡泥石流預警,災害預警和現場監測,核泄露監測。
(5)娛樂業:用於電影產品的設計,為電影演員和場景進行的設計,3D游戲的開發,虛擬博物館,虛擬旅遊指導,人工成像,場景虛擬,現場虛擬。
C. 3d技術原理是什麼
人以左右眼看同樣的對象,兩眼所見角度不同,在視網膜上形成的像並不完全相同,這兩個像經過大腦綜合以後就能區分物體的前後、遠近,從而產生立體視覺。立體電影的原理即為以兩台攝影機仿照人眼睛的視角同時拍攝,在放映時亦以兩台放影機同步放映至同一面銀幕上,以供左右眼觀看,從而產生立體效果。
拍攝立體電影時需將兩台攝影機架在一具可調角度的特製雲台上,並以
立體電影原理
符合人眼觀看的角度來拍攝。兩台攝影機的同步性非常重要,因為哪怕是幾十分之一秒的誤差都會讓左右眼覺得不協調;所以拍片時必須打板,這樣在剪輯時才能找得到同步點。
放映立體電影時,兩台放影機以一定方式放置,並將兩個畫面點對點完全一致地、同步地投射在同一個銀幕內。在每台投影機的鏡頭前都必須加一片偏光鏡,一台是橫向偏振片,一台是縱向偏振片(或斜角交叉),這樣銀幕就將不同的偏振光反射到觀眾的眼睛裡。觀眾觀看電影時亦要戴上偏振光眼鏡,左右鏡片的偏振方向必須與投影機搭配,如此左右眼就可以各自過濾掉不合偏振方向的畫面,只看到相應的偏振光圖象,即左眼只能看到左機放映的畫面,右眼只能看到右機放映的畫面。這些畫面經過大腦綜合後,就產生了立體視覺。