1. 機電一體化包括哪些專業
機電一體化技術是將機械技術、電工電子技術、微電子技術、信息技術、感測器技術、介面技術、信號變換技術等多種技術進行有機地結合,並綜合應用到實際中去的綜合技術,現代化的自動生產設備幾乎可以說都是機電一體化的設備。
機電一體化技術即結合應用機械技術和電子技術於一體。隨著計算機技術迅猛發展和廣泛應用,機電一體化技術獲得前所未有的發展,成為一門綜合計算機與信息技術、自動控制技術、感測檢測技術、伺服傳動技術和機械技術等交叉的系統技術,目前正向光機電一體化技術方向發展,應用范圍愈來愈廣泛。
培養目標:培養從事機電一體化設備的使用和技術管理工作的高級技術應用性專門人才。
核心課程:測試技術基礎、工程材料學基礎、工程力學基礎、工程制圖、互換性與技術測量、機械CAD基礎、機械設備電氣控制(含plc)、機械設計基礎、計算機輔助數控編程、數控機床與編程等。
就業方向:機械製造工藝設計與實施、工裝設計與實施、機電一體化設備的管理和維護、數控機床的編程和操作等工作。
機電一體化專業就業前景到底怎樣呢?市場調研發現機電一體化專業是一個寬口徑專業,適應范圍很廣,學生在校期間除學習各種機械、電工電子、計算機技術、控制技術、檢測感測等理論知識外,還將參加各種技能培訓和國家職業資格證書考試,充分體現重視技能培養的特點。學生畢業後主要面向珠江三角洲各企業、公司,從事加工製造業,家電生產和售後服務,數控加工機床設備使用維護,物業自動化管理系統,機電產品設計、生產、改造、技術支持,以及機電設備的安裝、調試、維護、銷售、經營管理等等。
2. 機電一體化都有哪些專業
電工與電子技術。
機械製造技術。
液壓與氣動技術。
機電設備控制技術。
數控加工工藝與編程。
微機原理及應用。
可編程式控制制器。
測試技術。
數控機床故障診斷與維護。
3. 機電一體化技術都有哪些應用
機電一體化技術的應用:
一、可編程式控制制器的一般原理及組成
(一)概述
可編程式控制制器的起源可以追溯到20世紀60年代。美國通用汽車(GM)公司為了適應汽車型號不斷更新的需要,提出希望有這樣一種控制設備:
(1)它的繼電控制系統設計周期短,接線簡單,成本低。
(2)它能把計算機的許多功能和繼電控制系統結合起來,但編程又比計算機簡單易學、操作方便。
(3)系統通用性強。
1969年美國DEC公司研製出第一台可編程式控制制器,用在GM公司生產線上獲得成功。其後日本、德國等相繼引入,可編程式控制制器迅速發展起來。但這一時期它主要用於順序控制,雖然也採用了計算機的設計思想,但實際上只能進行邏輯運算,故稱為可編程邏輯控制器,簡稱PLC(ProgrammableLogicController)。
進入20世紀80年代,隨著微電子技術和計算機技術的迅猛發展,才使得可編程式控制制器有突飛猛進的發展。其功能已遠遠超出邏輯控制、順序控制的范圍,故稱可編程式控制制器簡稱PC(ProgratamableController)。但由於PC容易和個人計算機(PersonalComputer)混淆,故人們仍習慣地用PLC作為可編程式控制制器的縮寫。
目前PLC功能日益增強,可進行模擬量控制、位置控制。特別是遠程通信功能的實現,易於實現柔性加工和製造系統(FMS),使得PLC如虎添翼。無怪乎有人將PLC稱為現代工業控制的三大支柱(即:PLC、機器人和CAD/CAM)之一。
目前PLC已廣泛應用於冶金、礦業、機械、輕工等領域,為工業自動化提供了有力的工具,加速了極點一體化的實現。
二、PLC的基本結構及工作原理
(一)PLC的基本結構
PLC生產廠家很多,產品結構也各不相同,但其基本組成部分大致相同。PLC採用了典型的計算機結構,主要包括CPU、RAM、ROM和輸入、輸出介面電路等。其內部採用匯流排結構,進行數據和指令的傳輸。如果把PLC看作一個系統,該系統由輸入變數一PLC一輸出變數組成,外部的各種開信號、模擬信號、感測器檢測的各種信號據均作為PLC的輸入變數,它們經PLC外部輸入到內部寄存器中,經PLC內部邏輯運算或其他各種運算、處理後送到輸出端子,它們是PLC的輸出變數。由這些輸出變數對外圍設備進行各種控制。這里可以將PLC看作一個中間處理器或變換器,以將輸入變數變換為輸出變數。
下面具體介紹各部分作用。
1、CPU
CPU是中央處理器(CentreProcessingUnit)的英文縮寫。它作為整個PLC的核心,起著總指揮的作用,它主要完成以下功能:
(1)將輸入信號送入PLC中存儲起來。
(2)按存放的先後順序取出用戶指令,進行編譯。
(3)完成用戶指令規定的各種操作。
(4)將結果送到輸出端。
(5)響應各種外圍設備(如編程器、列印機等)的請求。
目前PLC中所用的CPU多為單片機,在高檔機中現已採用16位甚至32位CPU,功能極強。
2、存儲器
PLC內部存儲器有兩類:一類是RAM(即隨機存取存儲器),可以隨時由CPU對它進行讀出、寫入;另一類是ROM(即只讀存儲器),CPU只能從中讀取而不能寫入。RAM主要用來存放各種暫存的數據、中間結果及用戶正在調試的程序,ROM主要存放監控程序及用戶已經調試好的程序,這些程序都事先燒在ROM晶元中,開機後便可運行其中程序。
3、輸入、輸出介面電路
它起著PLC和外圍設備之間傳遞信息作用。為了保證PLC可靠工作,設計者在PLC的介面電路上採取了不少措施。這些介面電路有以下特點:
(1)輸入採用光電耦合電路,可大大減少電磁干擾。
(2)輸出也採用光電隔離並有三種方式,即繼電器、晶體管和晶閘管。這使得PLC可以適合各種用戶的不同要求。如低速、大功率負載一般採用繼電器輸出;高速大功率則採用晶閘管輸出;高速小功率可以用晶體管輸出等等。而且有些輸出電路做成模塊式,可插拔,更換起來十分方便。
除了上面介紹的幾個主要部分外,PLC上還配有和各種外圍設備的介面,均採用插座引出到外殼上,可配接編程器、列印機、錄音機以及A/D、D/A、串列通信模塊,可以十分方便地用電纜進行連接。
(二)PLC的工作原理
PLC雖具有微機的許多特點,但它的工作方式卻與微機有很大不同。微機一般採用等待命令的工作方式,如常見的鍵盤掃描方式或I/O掃描方式,有鍵按下或I/O動作,則轉入相應的子程序,無鍵按下,則繼續掃描。PLC則採用循環掃描工作方式。在PLC中,用戶程序按先後順序存放。
PLC從第一條指令開始執行程序,直至遇到結束符後又返回第一條。如此周而復始不斷循環。每一個循環稱為一個掃描周期。若輸入變數在掃描刷新周期發生變化,則本次掃描周期中輸出變數相對應的輸入產生了響應。反之,若輸入變數刷新之後,輸入變數才發生變化,則本次周期的輸出不變,即不響應,而要到下一次掃描期問輸出才會產生響應。由於PLC採用循環掃描的工作方式,所以它的輸出對於輸入的響應速度要受到掃描周期的影響。掃描周期的長短主要取決於這幾個因素:一是CPU執行指令的速度;二是每條指令佔用的時間;三是指令條數的多少,即程序長短。
對於慢速控制系統,響應速度常常不是主要的,故這種工作方式不但沒有壞處反而可以增強系統抗干擾能力。因為干擾常是脈沖式的,短時的,而由於系統響應較慢,常常要幾個掃描周期才響應一次,而多次掃描後,瞬間干擾所引起的誤動作將會大大減少,故增強了抗干擾能力。
但對於時間要求交嚴格、響應速度要求較快的系統,這一問題就須慎重考慮。應對響應時間作出精確的計算,精心編排程序,合理安排指令的順序,以盡量減少掃描周期造成的響應延時等不良影響。
總之,採用循環掃描的工作方式,是PLC區別於微機和其他控制設備的最大特點。
(三)PLC的特點
PLC的特點可以大致歸納如下:
(1)抗干擾能力強和可靠性高。PLC的設計者採取了各種措施來提高可靠性,主要有這樣幾個方面:
①輸入、輸出均採用光電隔離,提高了抗干擾能力。
②主機的輸入電源和輸出電源均可相互獨立,減少了電源間干擾。
③採用循環掃描工作方式。提高抗干擾能力。
④內部採用「監視器」電路,以保證CPU可靠地工作。
⑤採用密封防塵抗振的外殼封裝及內部結構,可適應惡劣環境。
由於採取了這些措施,使得PLC有很強的抗干擾能力,實驗證明一般可抗1kV、1μs的窄脈沖干擾。其平均無故障時間(MTBF)一般可達5~10萬h。
(2)採用模塊化組合式結構,使系統構成十分靈活,可根據需要任意組合,易於維修,易於實現分散式控制。
(3)編程語言簡單易學,便於普及。PLC採用面向控制過程的編程語言,簡單、直觀,易學易記,沒有微機基礎的人也很容易學會,故適於在工礦企業中推廣。
(4)可進行在線修改,柔性好。
(四)PLC的應用場合
PLC在國內外已廣泛應用於鋼鐵、采礦、水泥、石油、化工、電力、機械製造、汽車裝卸、造紙、紡織、環保及娛樂等各行各業。它的應用大致可分為以下幾種類型:
(1)採用開光邏輯控制。這是PLC最基本的應用范圍。可用PLC取代傳統繼電控制,如機床電氣、電機控制中心等,也可取代順序控制,如高爐上料、電梯控制、貨物存取、運輸、檢測等。總之,PLC可用於單機、多機群以及生產線的自動化控制。
(2)用於機械加工的數字控制。PLC和計算機數控(NCN)裝置組合成一體,可以實現數值控制,組成數控機床。
(3)用於機器人控制,可用一台PLC實現3~6軸的機器人控制。
(4)用於閉環過程式控制制。現代大型PLC都配有PID字程序或PID模塊,可實現單迴路、多迴路的調節控制。
(5)用於組成多極控制系統,實現工廠自動化網路。
(6)目前在我國鐵路客車的自動控制和行車安全檢測等得到廣泛應用,是我國鐵路客車裝備和技術的發展方向。
4. 機電一體化都有哪些關鍵技術
機電一體化的關鍵技術:
發展機電一體化技術所面臨的共性關鍵技術包括精密機械技術、感測檢測技術、伺服驅動技術、計算機與信息處理技術、自動控制技術、介面技術和系統總體技術等。現代的機電一體化產品甚至還包含了光、聲、化學、生物等技術的應用。
1、機械技術
機械技術是機電一體化的基礎。隨著高新技術引入機械行業,機械技術面臨著挑戰和變革。在機電一體化產品中,它不再是單一地完成系統間的連接,而是要優化設計系統結構、質量、體積、剛性和壽命等參數對機電一體化系統的綜合影響。機械技術的著眼點在於如何與機電一體化的技術相適應,利用其他高、新技術來更新概念,實現結構上、材料上、性能上以及功能上的變更,滿足減少質量、縮小體積、提高精度、提高剛度、改善性能和增加功能的要求。尤其那些關鍵零部件,如導軌、滾珠絲杠、軸承、傳動部件等的材料、精度對機電一體化產品的性能、控制精度影響很大。
在製造過程的機電一體化系統,經典的機械理論與工藝應藉助於計算機輔助技術,同時採用人工智慧與專家系統等,形成新一代的機械製造技術。這里原有的機械技術以知識和技能的形式存在。如計算機輔助工藝規程編制(CAPP)是目前CAD/CAM系統研究的瓶頸,其關鍵問題在於如何將各行業、企業、技術人員中的標准、習慣和經驗進行表達和陳述,從而實現計算機的自動工藝設計與管理。
2、感測與檢測技術
感測與檢測裝置是系統的感受器官,它與信息系統的輸入端相連並將檢測到的信息輸送到信息處理部分。感測與檢測是實現自動控制、自動調節的關鍵環節,它的功能越強,系統的自動化程度就越高。感測與檢測的關鍵元件是感測器。
機電一體化系統或產品的柔性化、功能化和智能化都與感測器的品種多少、性能好壞密切相關。感測器的發展正進入集成化、智能化階段。感測器技術本身是一門多學科、知識密集的應用技術。感測原理、感測材料及加工製造裝配技術是感測器開發的三個重要方面。
感測器是將被測量(包括各種物理量、化學量和生物量等)變換成系統可識別的、與被測量有確定對應關系的有用電信號的一種裝置。現代工程技術要求感測器能快速、精確地獲取信息,並能經受各種嚴酷環境的考驗。與計算機技術相比,感測器的發展顯得緩慢,難以滿足技術發展的要求。不少機電一體化裝置不能達到滿意的效果或無法實現設計的關鍵原因在於沒有合適的感測器。因此大力開展感測器的研究,對於機電一體化技術的發展具有十分重要的意義。
3、伺服驅動技術
伺服系統是實現電信號到機械動作的轉換裝置或部件,對系統的動態性能、控制質量和功能具有決定性的影響。伺服驅動技術主要是指機電一體化產品中的執行元件和驅動裝置設計中的技術問題,它涉及設備執行操作的技術,對所加工產品的質量具有直接的影響。機電一體化產品中的伺服驅動執行元件包括電動、氣動、液壓等各種類型,其中電動式執行元件居多。驅動裝置主要是各種電動機的驅動電源電路,目前多由電力電子器件及集成化的功能電路構成。在機電一體化系統中,通常微型計算機通過介面電路與驅動裝置相連接,控制執行元件的運動,執行元件通過機械介面與機械傳動和執行機構相連,帶動工作機械作回轉、直線以及其他各種復雜的運動。常見的伺服驅動有電液馬達、脈沖油缸、步進電機、直流伺服電機和交流伺服電機等。由於變頻技術的發展,交流伺服驅動技術取得突破性進展,為機電一體化系統提供了高質量的伺服驅動單元,極大地促進了機電一體化技術的發展。
4、信息處理技術
信息處理技術包括信息的交換、存取、運算、判斷和決策,實現信息處理的工具大都採用計算機,因此計算機技術與信息處理技術是密切相關的。計算機技術包括計算機的軟體技術和硬體技術、網路與通信技術、數據技術等。機電一體化系統中主要採用工業控制計算機(包括單片機、可編程序控制器等)進行信息處理。人工智慧技術、專家系統技術、神經網路技術等都屬於計算機信息處理技術。
在機電一體化系統中,計算機信息處理部分指揮整個系統的運行。信息處理是否正確、及時,直接影響到系統工作的質量和效率。因此,計算機應用及信息處理技術已成為促進機電一體化技術發展和變革的最活躍的因素。
5、自動控制技術
自動控制技術范圍很廣,機電一體化的系統設計是在基本控制理論指導下,對具體控制裝置或控制系統進行設計;對設計後的系統進行模擬,現場調試;最後使研製的系統可靠地投入運行。由於控制對象種類繁多,所以控制技術的內容極其豐富,例如高精度定位控制、速度控制、自適應控制、自診斷、校正、補償、再現、檢索等。
隨著微型機的廣泛應用,自動控制技術越來越多地與計算機控制技術聯系在一起,成為機電一體化中十分重要的關鍵技術。
6、介面技術
機電一體化系統是機械、電子、信息等性能各異的技術融為一體的綜合系統,其構成要素和子系統之間的介面極其重要,主要有電氣介面、機械介面、人機介面等。電氣介面實現系統間信號聯系;機械介面則完成機械與機械部件、機械與電氣裝置的連接;人機介面提供人與系統間的交互界面。介面技術是機電一體化系統設計的關鍵環節。
7、系統總體技術
系統總體技術是一種從整體目標出發,用系統的觀點和全局角度,將總體分解成相互有機聯系的若干單元,找出能完成各個功能的技術方案,再把功能和技術方案組成方案組進行分析、評價和優選的綜合應用技術。系統總體技術解決的是系統的性能優化問題和組成要素之間的有機聯系問題,即使各個組成要素的性能和可靠性很好,如果整個系統不能很好協調,系統也很難保證正常運行。
在機電一體化產品中,機械、電氣和電子是性能、規律截然不同的物理模型,因而存在匹配上的困難;電氣、電子又有強電與弱電及模擬與數字之分,必然遇到相互干擾和耦合的問題;系統的復雜性帶來的可靠性問題;產品的小型化增加的狀態監測與維修困難;多功能化造成診斷技術的多樣性等。因此就要考慮產品整個壽命周期的總體綜合技術。
為了開發出具有較強競爭力的機電一體化產品,系統總體設計除考慮優化設計外,還包括可靠性設計、標准化設計、系列化設計以及造型設計等。
機電一體化技術有著自身的顯著特點和技術范疇,為了正確理解和恰當運用機電一體化技術,我們還必須認識機電一體化技術與其他技術之間的區別。
(1)機電一體化技術與傳統機電技術的區別。傳統機電技術的操作控制主要以電磁學原理為基礎的各種電器來實現,如繼電器、接觸器等,在設計中不考慮或很少考慮彼此間的內在聯系。機械本體和電氣驅動界限分明,整個裝置是剛性的,不涉及軟體和計算機控制。機電一體化技術以計算機為控制中心,在設計過程中強調機械部件和電器部件間的相互作用和影響,整個裝置在計算機控制下具有一定的智能性。
(2)機電一體化技術與並行技術的區別。機電一體化技術將機械技術、微電子技術、計算機技術、控制技術和檢測技術在設計和製造階段就有機結合在一起,十分注意機械和其他部件之間的相互作用。並行技術是將上述各種技術盡量在各自范圍內齊頭並進,只在不同技術內部進行設計製造,最後通過簡單疊加完成整體裝置。
(3)機電一體化技術與自動控制技術的區別。自動控制技術的側重點是討論控制原理、控制規律、分析方法和自動系統的構造等。機電一體化技術是將自動控制原理及方法作為重要支撐技術,將自控部件作為重要控制部件。它應用自控原理和方法,對機電一體化裝置進行系統分析和性能測算。
(4)機電一體化技術與計算機應用技術的區別。機電一體化技術只是將計算機作為核心部件應用,目的是提高和改善系統性能。計算機在機電一體化系統中的應用僅僅是計算機應用技術中一部分,它還可以作為辦公、管理及圖像處理等廣泛應用。機電一體化技術研究的是機電一體化系統,而不是計算機應用本身。
5. 機電一體化的6個主要相關技術是什麼
機電一體化產品是由多種技術以及相關的組成部分構成的綜合體,而機電一體化技術是由多種技術相互交叉、相互滲透形成的一門綜合性邊緣技術,它所涉及的技術領域非常廣泛。概括起來,機電一體化設計的關鍵技術包括下述6個方面:
(1)精密機械技術。機械技術是機電一體化技術的基礎,因為機電一體化產品的主功能和構造功能大都以機械技術為主來得以實現。在機械傳動和控制與電子技術 相互結合的過程中,對機械技術提出了更高的要求,如傳動的精密性和精確度的要求與傳統機械技術相比有了很大的提高。在機械繫統技術中,新材料、新工藝、新 原理以及新結構等方面在不斷地發展和完善,以滿足機電一體化產品對縮小體積、減輕重量、提高精度和剛皮以及改善工作性能等方面的要求。
(2)信息處理技術。信息處理技術是指在機電一體化產品工作過程中,與工作過程各種參數和狀態以及自動控制有關的信息的交換、存取、運算、判斷和決策分析 等。在機電一體化產品中,實現信息處理技術的主要丁且是計算機。計算機技術包括硬體和軟體技術、網路與通信技術、數據處理技術和資料庫技術等。在機電一體 化產品中,計算機信息處理裝置是產品的核心,它控制和指揮整個機電一體化產品的運行,因此,計算機應用及其信息處理技術是機電一體化技術中最關鍵的技術, 它包括日前廣泛研究並得到實際應用的人工智慧技術、專家系統技術以及神經網路技術等。
(3)檢測與感測器技術。在機電一體化產品中,工作過程的各種參數、工作狀態以及與工作過程有關的相應信息都要通過感測器進行接收,並通過相應的信號檢測 裝置進行測量,然後送人信息處理裝置以及反饋給控制裝置,以實現產品工作過程的白動控制。機電一體化產品要求感測器能快速和准確地獲取信息並且不受外部 工作條件和環境的影響,同時檢測裝置能不失真地對信息信號進行放大和輸送以及轉換。
(4)自動控制技術。機電一體化產品中的自動控制技術包括高精度定位控制、速度控制、自適應控制、校正、補償等。機電一體化產品中自動控制功能的不斷擴 大,使產品的精度和效率都在迅速提高。通過自動控制,機電一體化產品在工作過程中能及時發現故障,並自動實施[切換,減少了停機時間,使設備的有效利用率 提高。由於計算機的廣泛應用,自動控制技術越來越多地與計算機控制技術結合在一起,它已成為機電一體化技術中十分重要的關鍵技術。該技術的難點在於現代控 制理論的工程化和實用化,控制過程中邊界條件的確定,優化控制模型的建立以及抗干擾等o
(5)伺服驅動技術。伺服驅動技術主要是指機電 體化產品中的執行元件和驅動裝置設計中的技術問題,它涉及設備執行操作的技術,對所加丁產品的質量具有皇接的影響。機電一體化產品中的執行元件有電動、氣 動和液壓等類型,其個多採用電動式執行元件,驅動裝置主要是各種電動機的驅動電源電路,目前多為電力電子器件及集成化的功能電路構成。執行元件一方面通過 介面電路與計算機相連,接受控制系統的指令,另一方面通過機械介面與機械倫動和執行機構相連,以實現規定的動作。因此,伺服驅動技術直接影響著機電一體化 產品的功能執行和操作,對產品的動態性能、穩定性能、操作精度和控制質量等具有決定性的影響。
(6)系統總體技術。系統總體技術是從整體目標出發,用系統的觀點和方法,將機電一體化產品的總體功能分解成若干功能單元,找出能夠完成各個功能的可能技 術方案,再把功能與技術方案組合成方案組進行分析、評價,綜合優選r9適宜的功能技術方案。系統總體技術的主要目的是在機電一體化產品各組成都分的技術成 熟、組件的性能和可靠性良好的基礎上,通過協調各組件的相互關系和所用技術的一致性來保證實現產而經濟、可靠、高效率和操作方便等。系統總體技術是最能體 現機電一體化設計特點的技術,也是保證其產品工作性能和技術指標得以實現的關鍵技術。(這是網上找到的)。
6. 機電一體化產品有哪些
產品:
如:工業機器人、數控機床、加工中心、電子自動售貨機、物體識別系統、檢測設備等,也有隻是在機械設備上加上電子控制裝置較為簡單的如:電子控制的變速器、爐溫自動控制設備、全自動洗衣機、電子縫紉機等。
機電一體化又稱機械電子工程,是機械工程與自動化的一種,英語稱為Mechatronics,它是由英文機械學Mechanics的前半部分與電子學Electron...
產品:
如:工業機器人、數控機床、加工中心、電子自動售貨機、物體識別系統、檢測設備等,也有隻是在機械設備上加上電子控制裝置較為簡單的如:電子控制的變速器、爐溫自動控制設備、全自動洗衣機、電子縫紉機等。
機電一體化又稱機械電子工程,是機械工程與自動化的一種,英語稱為Mechatronics,它是由英文機械學Mechanics的前半部分與電子學Electronics的後半部分組合而成。機電一體化最早出現在1971年日本雜志《機械設計》的副刊上,隨著機電一體化技術的快速發展,機電一體化的概念被我們廣泛接受和普遍應用。隨著計算機技術的迅猛發展和廣泛應用,機電一體化技術獲得前所未有的發展。現在的機電一體化技術,是機械和微電子技術緊密集合的一門技術,他的發展使冷冰冰的機器有了人性化,智能化。
機電一體化技術是將機械技術、電工電子技術、微電子技術、信息技術、感測器技術、介面技術、信號變換技術等多種技術進行有機地結合,並綜合應用到實際中去的綜合技術,現代化的自動生產設備幾乎可以說都是機電一體化的設備。
研究將電子器件的信息處理和控制功能附加或融合在機械
裝置中的一種復合化技術。俗稱機電一體化。其全稱為機械電子工程學,英語為mechanical
and
electronical
engineering。
全部
7. 機電一體化技術主要學些什麼
機電一體化專業的學習內容有機械技術、電工電子技術、微電子技術、信息技術、感測器技術、介面技術、信號變換技術等多種技術,並將這些技術進行有機地結合,合理應用到實際中去。現代化的自動生產設備幾乎可以說都是機電一體化的專業的學習對象。
機電一體化專業主要開設《電機及其應用》、《工廠電氣控制設備及其應用》、《單片機控制技術應用》、《感測器技術應用》、《電力電子與電機調速技術應用》等核心課程。
機電一體化專業學生畢業後主要面向各企業、公司,從事加工製造業,家電生產和售後服務,數控加工機床設備使用維護,物業自動化管理系統,機電產品設計、生產、改造、技術支持,以及機電設備的安裝、調試、維護、銷售、經營管理等工作。
8. 機電一體化技術是什麼
機電一體化技術即結合應用機械技術和電子技術於一體。隨著計算機技術迅猛發展和廣泛應用,機電一體化技術獲得前所未有的發展,成為一門綜合計算機與信息技術、自動控制技術、感測檢測技術、伺服傳動技術和機械技術等交叉的系統技術,目前正向光機電一體化技術(Opto-mechatronics)(Opto-mechatronics)(Opto-mechatronics)方向發展,應用范圍愈來愈廣泛。
日本企業界在1970年左右最早提出「機電一體化技術」這一概念,當時他們取名為「Mechatronics」,即結合應用機械技術和電子技術於一體。
研究目的
機械電子學主要研究目的是把機械技術與微電子技術和信息技術有機地結合為一體,實現整個系統的最優化。機械電子學可以充分發揮機械技術、微電子技術和信息技術的各自的長處和特點,促進機械產品的更新換代。機械電子學系統主要由機械主體、感測器、信息處理和執行機構等部分組成。
較高級的系統不但有硬體,而且還有相應的軟體,利用軟體技術可以實現硬體難以實現的功能,使機械繫統增加柔性。典型的機械電子系統有數控機床、加工中心、工業機器人等。機械電子學技術除用於單個機器、設備或一般的生產系統的技術改造之外,還用於柔性製造系統、計算機集成製造系統、工廠自動化、辦公自動化、家庭自動化等方面。
9. 機電一體化技術包括哪些領域
機電一體化技術 即結合應用機械技術和電子技術於一體。
隨著計算機技術的迅猛發展和廣泛應用,機電一體化技術獲得前所未有的發展,成為一門綜合計算機與信息技術、自動控制技術、感測檢測技術、伺服傳動技術和機械技術等交叉的系統技術,目前正向光機電一體化技術,應用范圍愈來愈廣。
機電一體化技術具體包括以下內容:
(1) 機械技術 機械技術是機電一體化的基礎,機械技術的著眼點在於如何與機電一體化技術相適應,利用其它高、新技術來更新概念,實現結構上、材料上、性能上的變更,滿足減小重量、縮小體積、提高精度、提高剛度及改善性能的要求。在機電一體化系統製造過程中,經典的機械理論與工藝應藉助於計算機輔助技術,同時採用人工智慧與專家系統等,形成新一代的機械製造技術。
(2) 計算機與信息技術
其中信息交換、存取、運算、判斷與決策、人工智慧技術、專家系統技術、神經網路技術均屬於計算機信息處理技術。
(3) 系統技術
系統技術即以整體的概念組織應用各種相關技術,從全局角度和系統目標出發,將總體分解成相互關聯的若干功能單元,介面技術是系統技術中一個重要方面,它是實現系統各部分有機連接的保證。
(4) 自動控制技術
其范圍很廣,在控制理論指導下,進行系統設計,設計後的系統模擬,現場調試,控制技術包括如高精度定位控制、速度控制、自適應控制、自診斷校正、補償、再現、檢索等。
(5) 感測檢測技術
感測檢測技術是系統的感受器官,是實現自動控制、自動調節的關鍵環節。其功能越強,系統的自動化程序就越高。現代工程要求感測器能快速、精確地獲取信息並能經受嚴酷環境的考驗,它是機電一體化系統達到高水平的保證。
(6) 伺服傳動技術 包括電動、氣動、液壓等各種類型的傳動裝置,伺服系統是實現電信號到機械動作的轉換裝置與部件、對系統的動態性能、控制質量和功能有決定性的影響。
培養掌握機械自動化技術、設備維護和調試、具備專業繼續提升能力,服務於生產第一線的技術應用型人才。
主幹課程:機械制圖與CAD、機械設計基礎、液壓與氣動、機械製造技術、數控機床編程與操作、電工與電子技術、可編程式控制制器、機床電氣控制、機電一體化系統設計、設備安裝與維修