導航:首頁 > 信息技術 > 傅里葉紅外光譜儀是什麼技術檢測

傅里葉紅外光譜儀是什麼技術檢測

發布時間:2023-02-09 08:07:49

A. 傅里葉紅外光譜儀干什麼用的,可以測哪些參數,都有什麼意義

傅里葉紅外光譜儀(FT-IR)是分子吸收光譜,不同的官能團,化學鍵振動或轉動,對不同波數的紅外光有吸收,據此,可以測定出樣品有哪些官能團或化學鍵存在或變化,用以物質的定性、定量、反應過程等的研究。

B. 傅里葉紅外光譜儀的介紹

產品簡介傅里葉變換紅外光譜儀(Fourier Transform Infrared Spectrometer,簡寫為FTIR Spectrometer),簡稱為傅里葉紅外光譜儀。它不同於色散型紅外分光的原理,是基於對干涉後的紅外光進行傅里葉變換的原理而開發的紅外光譜儀,主要由紅外光源、光闌、干涉儀(分束器、動鏡、定鏡)、樣品室、檢測器以及各種紅外反射鏡、激光器、控制電路板和電源組成。可以對樣品進行定性和定量分析,廣泛應用於醫葯化工、地礦、石油、煤炭、環保、海關、寶石鑒定、刑偵鑒定等領域。

C. 紅外光譜儀主要檢測什麼

紅外光譜儀主要檢測物質所含的官能團的種類以及其所處的化學環境。

使用注意事項:

1、測定時實驗室的溫度應在15~30℃,相對濕度應在65%以下,所用電源應配備有穩壓裝置和接地線。因要嚴格控制室內的相對濕度,因此紅外實驗室的面積不要太大,能放得下必須的儀器設備即可,但室內一定要有除濕裝置。

2、如所用的是單光朿型傅里葉紅外分光光度計(目前應用最多),實驗室里的CO2含量不能太高,因此實驗室里的人數應盡量少,無關人員最好不要進入,還要注意適當通風換氣。

3、如供試品為鹽酸鹽,因考慮到在壓片過程中可能出現的離子交換現象,標准規定用氯化鉀(也同溴化鉀一樣預處理後使用)代替溴化鉀進行壓片,但也可比較氯化鉀壓片和溴化鉀壓片後測得的光譜,如二者沒有區別,則可使用溴化鉀進行壓片。


D. 5. 傅里葉變換紅外光譜儀的基本結構,有哪些特點簡述工作原理

紅外線和可見光一樣都是電磁波,而紅外線是波長介於可見光和微波之間的一段電磁波。紅外光又可依據波長范圍分成近紅外、中紅外和遠紅外三個波區,其中中紅外區(2.5~25μm;4000~400cm-1)能很好地反映分子內部所進行的各種物理過程以及分子結構方面的特徵,對解決分子結構和化學組成中的各種問題最為有效,因而中紅外區是紅外光譜中應用最廣的區域,一般所說的紅外光譜大都是指這一范圍。
紅外光譜屬於吸收光譜,是由於化合物分子振動時吸收特定波長的紅外光而產生的,化學鍵振動所吸收的紅外光的波長取決於化學鍵動力常數和連接在兩端的原子摺合質量,也就是取決於分子的結構特徵。這就是紅外光譜測定化合物結構的理論依據。
紅外光譜作為「分子的指紋」廣泛用於分子結構和物質化學組成的研究。根據分子對紅外光吸收後得到譜帶頻率的位置、強度、形狀以及吸收譜帶和溫度、聚集狀態等的關系便可以確定分子的空間構型,求出化學建的力常數、鍵長和鍵角。從光譜分析的角度看主要是利用特徵吸收譜帶的頻率推斷分子中存在某一基團或鍵,由特徵吸收譜帶頻率的變化推測臨近的基團或鍵,進而確定分子的化學結構,當然也可由特徵吸收譜帶強度的改變對混合物及化合物進行定量分析。
傅里葉紅外光譜儀由光源、邁克爾遜干涉儀、樣品池、檢測器和計算機組成,由光源發出的光經過干涉儀轉變成干涉光,干涉光中包含了光源發出的所有波長光的信息。當上述干涉光通過樣品時某一些波長的光被樣品吸收,成為含有樣品信息的干涉光,由計算機採集得到樣品干涉圖,經過計算機快速傅里葉變換後得到吸光度或透光率隨頻率或波長變化的紅外光譜圖。

朋友可以到行業內專業的網站進行交流學習!
分析測試網路網這塊做得不錯,氣相、液相、質譜、光譜、葯物分析、化學分析。這方面的專家比較多,基本上問題都能得到解答,有問題可去那提問,網址網路搜下就有。

E. 傅里葉紅外光譜儀有哪幾部分,各自的功能

傅立葉紅外光譜儀最核心的部分是 邁克爾遜干涉儀。可以說沒有干涉儀就沒有傅立葉變換紅外光譜。正是因為紅外光源經過邁克爾遜干涉儀發生多色光相干,經過樣品吸收之後,檢測器檢測到含有樣品信息的紅外干涉光的干涉圖信號,再經過計算機將干涉圖信號經過傅立葉變換,才轉換成紅外光譜。
其餘的部件,如:檢測器,光源,光學反射鏡,採集卡,計算機等。
光源:用於產生寬頻的紅外光,樣品吸收光源產生的紅外光後引起樣品分子的振動態躍遷,從而引其透過樣品的紅外光在相應波長上的透過強度的變化,這也是紅外光譜能檢測分子振動特徵峰的理論來源。
光學反射鏡:用於改變紅外光的光路
檢測器:用於檢測透過樣品的紅外吸收信號,並將光信號轉換成電信號傳送給計算機的採集卡。

採集卡:用於採集檢測器檢測到的信號,並將信號存儲、處理成光譜。
計算機:用於控制光譜儀的運行,協調邁克爾遜干涉儀,檢測器和採集卡的運行、數據採集和處理。

F. 說明傅里葉紅外光譜儀與色散型紅外光譜儀的區別

紅外光譜[1](infrared spectra),以波長或波數為橫坐標以強度或其他隨波長變化的性質為縱坐標所得到的反映紅外射線與物質相互作用的譜圖。按紅外射線的波長范圍,可粗略地分為近紅外光譜(波段為0.8~2.5微米)、中紅外光譜(2.5~25微米)和遠紅外光譜(25~1000微米)。對物質自發發射或受激發射的紅外射線進行分光,可得到紅外發射光譜,物質的紅外發射光譜主要決定於物質的溫度和化學組成;對被物質所吸收的紅外射線進行分光,可得到紅外吸收光譜。每種分子都有由其組成和結構決定的獨有的紅外吸收光譜,它是一種分子光譜。分子的紅外吸收光譜屬於帶狀光譜。原子也有紅外發射和吸收光譜,但都是線狀光譜。
量子場論或量子電動力學可以正確地描述和解釋紅外射線(一種電磁輻射)與物質的相互作用。若採用半經典的理論處理方法,即對組成物質的分子和原子作為量子力學體系來處理,輻射場作為一種經典物理中的電磁波並忽略其光子的特徵,則分子紅外光譜是由分子不停地作振動和轉動而產生的。分子振動是指分子中各原子在平衡位置附近作相對運動,多原子分子可組成多種振動模式。當孤立分子中各原子以同一頻率、同一相位在平衡位置附近作簡諧振動時,這種振動方式稱簡正振動。含N個原子的分子應有3N-6個簡正振動方式;如果是線性分子,只有3N-5個簡正振動方式。圖中示出非線性3原子分子僅有的3種簡正振動模式。分子的轉動指的是分子繞質心進行的運動。分子振動和轉動的能量不是連續的,而是量子化的。當分子由一種振動(或轉動)狀態躍遷至另一種振動(或轉動)狀態時,就要吸收或發射與其能級差相應的光。
研究紅外光譜的方法主要是吸收光譜法。使用的光譜有兩種類型。一種是單通道或多通道測量的棱鏡或光柵色散型光譜儀,另一種是利用雙光束干涉原理並進行干涉圖的傅里葉變換數學處理的非色散型的傅里葉變換紅外光譜儀。
紅外光譜具有高度的特徵性,不但可以用來研究分子的結構和化學鍵,如力常數的測定等,而且廣泛地用於表徵和鑒別各種化學物種。
紅外識譜歌
紅外可分遠中近,中紅特徵指紋區,
1300來分界,注意橫軸劃分異。
看圖要知紅外儀,弄清物態液固氣。
樣品來源制樣法,物化性能多聯系。
識圖先學飽和烴,三千以下看峰形。
2960、2870是甲基,2930、2850亞甲峰。
1470碳氫彎,1380甲基顯。
二個甲基同一碳,1380分二半。
面內搖擺720,長鏈亞甲亦可辨。
烯氫伸展過三千,排除倍頻和鹵烷。
末端烯烴此峰強,只有一氫不明顯。
化合物,又鍵偏,~1650會出現。
烯氫面外易變形,1000以下有強峰。
910端基氫,再有一氫990。
順式二氫690,反式移至970;
單氫出峰820,干擾順式難確定。
炔氫伸展三千三,峰強很大峰形尖。
三鍵伸展二千二,炔氫搖擺六百八。
芳烴呼吸很特徵,1600~1430。
1650~2000,取代方式區分明。
900~650,面外彎曲定芳氫。
五氫吸收有兩峰,700和750;
四氫只有750,二氫相鄰830;
間二取代出三峰,700、780,880處孤立氫
醇酚羥基易締合,三千三處有強峰。
C-O伸展吸收大,伯仲叔醇位不同。
1050伯醇顯,1100乃是仲,
1150叔醇在,1230才是酚。
1110醚鏈伸,注意排除酯酸醇。
若與π鍵緊相連,二個吸收要看準,
1050對稱峰,1250反對稱。
苯環若有甲氧基,碳氫伸展2820。
次甲基二氧連苯環,930處有強峰,
環氧乙烷有三峰,1260環振動,
九百上下反對稱,八百左右最特徵。
縮醛酮,特殊醚,1110非縮酮。
酸酐也有C-O鍵,開鏈環酐有區別,
開鏈強寬一千一,環酐移至1250。
羰基伸展一千七,2720定醛基。
吸電效應波數高,共軛則向低頻移。
張力促使振動快,環外雙鍵可類比。
二千五到三千三,羧酸氫鍵峰形寬,
920,鈍峰顯,羧基可定二聚酸、
酸酐千八來偶合,雙峰60嚴相隔,
鏈狀酸酐高頻強,環狀酸酐高頻弱。
羧酸鹽,偶合生,羰基伸縮出雙峰,
1600反對稱,1400對稱峰。
1740酯羰基,何酸可看碳氧展。
1180甲酸酯,1190是丙酸,
1220乙酸酯,1250芳香酸。
1600兔耳峰,常為鄰苯二甲酸。
氮氫伸展三千四,每氫一峰很分明。
羰基伸展醯胺I,1660有強峰;
N-H變形醯胺II,1600分伯仲。
伯胺頻高易重疊,仲醯固態1550;
碳氮伸展醯胺III,1400強峰顯。
胺尖常有干擾見,N-H伸展三千三,
叔胺無峰仲胺單,伯胺雙峰小而尖。
1600碳氫彎,芳香仲胺千五偏。
八百左右面內搖,確定最好變成鹽。
伸展彎曲互靠近,伯胺鹽三千強峰寬,
仲胺鹽、叔胺鹽,2700上下可分辨,
亞胺鹽,更可憐,2000左右才可見。
硝基伸縮吸收大,相連基團可弄清。
1350、1500,分為對稱反對稱。
氨基酸,成內鹽,3100~2100峰形寬。
1600、1400酸根展,1630、1510碳氫彎。
鹽酸鹽,羧基顯,鈉鹽蛋白三千三。
礦物組成雜而亂,振動光譜遠紅端。
鈍鹽類,較簡單,吸收峰,少而寬。
注意羥基水和銨,先記幾種普通鹽。
1100是硫酸根,1380硝酸鹽,
1450碳酸根,一千左右看磷酸。
硅酸鹽,一峰寬,1000真壯觀。
勤學苦練多實踐,紅外識譜不算難。
紅外光譜發展史
雨後天空出現的彩虹,是人類經常觀測到的自然光譜。而真正意義上對光譜的研究是從英國科學家牛頓(Newton) 開始的。1666 年牛頓證明一束白光可分為一系列不同顏色的可見光,而這一系列的光投影到一個屏幕上出現了一條從紫色到紅色的光帶。牛頓導入「光譜」(spectrum)一詞來描述這一現象。牛頓的研究是光譜科學開端的標志。
從牛頓之後人類對光的認識逐漸從可見光區擴展到紅外和紫外區。1800 年英國科學家W. Herschel 將來自太陽的輻射構成一副與牛頓大致相同的光譜,然後將一支溫度計通過不同顏色的光,並且用另外一支不在光譜中的溫度計作為參考。他發現當溫度計從光譜的紫色末端向紅色末端移動時,溫度計的讀數逐漸上升。特別令人吃驚的是當溫度計移動到紅色末端之外的區域時,溫度計上的讀數達到最高。這個試驗的結果有兩重含義,首先是可見光區域紅色末端之外還有看不見的其他輻射區域存在,其次是這種輻射能夠產生熱。由於這種射線存在的區域在可見光區末端以外而被稱為紅外線。(1801 年德國科學家J.W. Ritter 考察太陽光譜的另外一端,即紫色端時發現超出紫色端的區域內有某種能量存在並且能使AgCl 產生化學反應,該試驗導致了紫外線的發現。
1881年Abney 和Festing 第一次將紅外線用於分子結構的研究。他們Hilger光譜儀拍下了46個有機液體的從0.7到1.2微米區域的紅外吸收光譜。由於這種儀器檢測器的限制,所能夠記錄下的光譜波長范圍十分有限。隨後的重大突破是測輻射熱儀的發明。1880年天文學家Langley在研究太陽和其他星球發出的熱輻射時發明一種檢測裝置。該裝置由一根細導線和一個線圈相連,當熱輻射抵達導線時能夠引起導線電阻非常微小的變化。而這種變化的大小與抵達輻射的大小成正比。這就是測輻射熱儀的核心部分。用該儀器突破了照相的限制,能夠在更寬的波長范圍檢測分子的紅外光譜。採用NaCl作棱鏡和測輻射熱儀作檢測器,瑞典科學家Angstrem第一次記錄了分子的基本振動(從基態到第一激發態)頻率。1889年Angstrem首次證實盡管CO和CO2都是由碳原子和氧原子組成,但因為是不同的氣體分子而具有不同的紅外光譜圖。這個試驗最根本的意義在於它表明了紅外吸收產生的根源是分子而不是原子。而整個分子光譜學科就是建立在這個基礎上的。不久Julius發表了20個有機液體的紅外光譜圖,並且將在3000cm-1的吸收帶指認為甲基的特徵吸收峰。這是科學家們第一次將分子的結構特徵和光譜吸收峰的位置直接聯系起來。圖1是液體水和重水部分紅外光譜圖,主要為近紅外部分。圖中可觀察到水分子在739和970nm處有吸收峰存在,這些峰都處在可見光區紅色一端之外。由於氫鍵作用,液體水的紅外光譜圖比氣態水的譜圖要復雜得多。
紅外光譜儀的研製可追溯的20 世紀初期。1908 年Coblentz 制備和應用了用氯化鈉晶體為棱鏡的紅外光譜議;1910 年Wood 和Trowbridge6 研製了小階梯光柵紅外光譜議;1918 年Sleator 和Randall 研製出高分辨儀器。20 世紀40 年代開始研究雙光束紅外光譜議。1950 年由美國PE 公司開始商業化生產名為Perkin-Elmer 21 的雙光束紅外光譜議。與單光束光譜儀相比,雙光束紅外光譜議不需要由經過專門訓練的光譜學家進行操作,能夠很快的得到光譜圖。因此Perkin-Elmer 21 很快在美國暢銷。Perkin-Elmer 21 的問世大大的促進了紅外光譜儀的普及。
現代紅外光譜議是以傅立葉變換為基礎的儀器。該類儀器不用棱鏡或者光柵分光,而是用干涉儀得到干涉圖,採用傅立葉變換將以時間為變數的干涉圖變換為以頻率為變數的光譜圖。傅立葉紅外光譜儀的產生是一次革命性的飛躍。與傳統的儀器相比,傅立葉紅外光譜儀具有快速、高信噪比和高解析度等特點。更重要的是傅立葉變換催生了許多新技術,例如步進掃描、時間分辨和紅外成像等。這些新技術大大的拓寬了紅外的應用領域,使得紅外技術的發展產生了質的飛躍。如果採用分光的辦法,這些技術是不可能實現的。這些技術的產生,大大的拓寬了紅外技術的應用領域。 是用紅外成像技術得到的地球表面溫度分布和地球大氣層中水蒸氣含量圖。沒有傅立葉變換技術,不可能得到這樣的圖像。圖1.2 Perkin-Elmer 21 雙光束紅外光譜議。該儀器是由美國Perkin-Elmer 公司1950 開始製造,是最早期商業化生產的雙光束紅外光譜議。
紅外光譜的理論解釋是建立在量子力學和群論的基礎上的。1900 年普朗克在研究黑體輻射問題時,給出了著名的Plank 常數h, 表示能量的不連續性。量子力學從此走上歷史舞台。1911 年W Nernst 指出分子振動和轉動的運動形態的不連續性是量子理論的必然結果。1912 年丹麥物理化學家Niels Bjerrum 提出HCl 分子的振動是帶負電的Cl 原子核帶正電的H 原子之間的相對位移。分子的能量由平動、轉動和振動組成,並且轉動能量量子化的理論,該理論被稱為舊量子理論或者半經典量子理論。後來矩陣、群論等數學和物理方法被應用於分子光譜理論。隨著現代科學的不斷發展,分子光譜的理論也在不斷的發展和完善。分子光譜理論和應用的研究還在發展之中。多維分子光譜的理論和應用就是研究方向之一。

G. 傅里葉紅外光譜儀的用處

一、酒製品檢測分析

不同產地的葡萄酒具有不同的質量與風格,市場上葡萄酒以假亂真、以次充好現象頗多,尋找簡單有效地鑒別葡萄酒產區的方法,有利於葡萄酒市場的健康發展。向伶俐等人採用近、中紅外光譜的貝葉斯信息融合技術對葡萄酒原產地進行快速識別,建模集准確率為87.11 %,檢驗集准確率為90.87 %,提高判別的准確度,為葡萄酒原產地真偽識別提供了一種高效低成本的新方法。

此外,利用紅外光譜對白酒年份與香型鑒別也有十分效。因不同香型白酒的成分有所差異,其紅外光譜也不盡相同,可根據紅外光譜差異鑒別不同年份的白酒。

二、蜂蜜檢測分析

我國蜂蜜質量參差不齊,摻假現象也較為嚴重。孫燕等利用中紅外圖譜分析儀結合化學計量軟體建立饒河黑蜂蜂蜜產地真假判別模型判別饒河本地的蜂蜜樣品和其它地區蜂蜜樣品,准確率達90.3 %,為蜂蜜真偽鑒別提供了一種有效的方法。

三、谷類檢測分析

近年來,少數造假者頻頻在陳舊大米中塗抹摻加植物油、礦物油,增加其亮度和光澤,冒充優質新鮮大米銷售,嚴重危害消費者身心健康。張耀武等利用紅外光譜對塗有和摻有礦物油的大米進行定性鑒別。

將分離出含有礦物油的試樣進行紅外光譜測試,未出現 1745 cm-1脂 C=O 的伸縮振動吸收和1000~1300 cm-1伸縮振動吸收,證明該試樣中含有直鏈烷烴的礦物油。文中指出該方法可用於對大米、餅干、瓜子和食用油中是否摻加工業礦物油的鑒定。糧食在高溫高濕條件下極易發霉變質,不僅造成經濟損失還嚴重威脅人畜健康。

劉凌平等利用傅里葉變換衰減全反射紅外光譜技術結合化學計量學方法(ART-FTIR),對稻穀中7 種常見有害黴菌進行了快速鑒定,建立的線性判別分析和偏最小二乘判別分析模型對7種不同類別菌株的留一交互驗證整體正確率分別達到 87.1 %和87.3 %,表明ART-FTIR 技術技術可用於穀物中黴菌不同屬間的快速鑒別,尤其對不同菌屬的黴菌具有良好的判別效果。

四、果蔬檢測分析

果蔬中農葯殘留快速、高效的檢測技術是當前食品安全控制關注的重大問題。朱春艷用傅里葉紅外光譜技術對敵百蟲和辛硫磷兩種農葯的紅外光譜進行了測量和分析。

驗證了FTIR/ATR技術快速檢測蔬菜中有機磷農葯殘留的可行性,測定敵百蟲的最低的檢測限為0.2×10-6(體積分數),相關系數為0.9141,辛硫磷的最低檢測限為0.02×10-6,相關系數為0.9036,為果蔬農葯殘留檢測提供了一種方便、快捷、准確的方法。

(7)傅里葉紅外光譜儀是什麼技術檢測擴展閱讀:

傅里葉變換紅外光譜儀主要由紅外光源、分束器、干涉儀、樣品池、探測器、計算機數據處理系統、記錄系統等組成。

(1)光源:傅里葉變換紅外光譜儀為測定不同范圍的光譜而設置有多個光源。通常用的是鎢絲燈或碘鎢 燈(近紅外)、硅碳棒(中紅外)、高壓汞燈及氧化釷燈(遠紅外)。

(2)分束器:分束器是邁克爾遜干涉儀的關鍵元件。其作用是將入射光束分成反射和透射兩部分,然後 再使之復合,如果可動鏡使兩束光造成一定的光程差,則復合光束即可造成相長或相消干涉。

對分束器的要求是:應在波數v處使入射光束透射和反射各半,此時被調制的光束振幅最大。根據使用 波段范圍不同,在不同介質材料上加相應的表面塗層,即構成分束器。

(3)探測器:傅里葉變換紅外光譜儀所用的探測器與色散型紅外分光光度計所用的探測器無本質的區 別。常用的探測器有硫酸三甘鈦(TGS)、鈮酸鋇鍶、碲鎘汞、銻化銦等。

(4)數據處理系統:傅里葉變換紅外光譜儀數據處理系統的核心是計算機,功能是控制儀器的操作,收集 數據和處理數據。

H. 紅外分光光度計和傅里葉紅外光譜儀之間的區別

一、原理不同

1、紅外分光光度計:由光源發出的光,被分為能量均等對稱的兩束,一束為樣品光通過樣品,另一束為參考光作為基準。這兩束光通過樣品室進入光度計後,被扇形鏡以一定的頻率所調制,形成交變信號,然後兩束光和為一束,並交替通過入射狹縫進入單色器中。

2、傅里葉紅外光譜儀:是基於對干涉後的紅外光進行傅里葉變換的原理而開發的紅外光譜儀。

二、構成不同

1、紅外分光光度計:探測器將上述交變的信號轉換為相應的電信號,經放大器進行電壓放大後,轉入A/D轉換單位,計算機處理後得到從高波數到低波數的紅外吸收光譜圖。

2、傅里葉紅外光譜儀:由紅外光源、光闌、干涉儀(分束器、動鏡、定鏡)、樣品室、檢測器以及各種紅外反射鏡、激光器、控制電路板和電源組成。

三、應用不同

1、紅外分光光度計:可廣泛地應用在石油、化工、醫葯、環保、教學、材料科學、公安、國防等領域。

2、傅里葉紅外光譜儀:廣泛應用於醫葯化工、地礦、石油、煤炭、環保、海關、寶石鑒定、刑偵鑒定等領域。

I. 布魯克傅里葉紅外光譜儀用於測定什麼東西

傅里葉紅外光譜儀一般來說構造比較復雜,價格也稍微昂貴一些。傅里葉近紅外光譜儀的單色器結構主要是邁克爾遜干涉儀,這類型的單色器結構比較復雜,精度也比較高,同時在進行光譜數據處理的時候也充分運用傅里葉變換和反傅里葉變換。因此,這類型的儀器相對於分光光度計類的近紅外精度高,價格也昂貴,如德國布魯克MPA近紅外光譜儀就是傅里葉型的近紅外光譜儀。

-
-

-
-
-
請採納~

閱讀全文

與傅里葉紅外光譜儀是什麼技術檢測相關的資料

熱點內容
昆明乾花批發市場在哪裡 瀏覽:65
碳排放權登記和交易哪個重要 瀏覽:746
如何預防數據傾斜 瀏覽:844
某廠產品市場上最多的是什麼 瀏覽:927
如何增強信息推送 瀏覽:922
怎麼讓交易貓快速介入仲裁 瀏覽:225
成都最大的小市場在哪裡 瀏覽:665
代理業務員是什麼意思 瀏覽:953
天津國際招標代理公司是什麼級別 瀏覽:992
解封qq號要發多少信息 瀏覽:615
如何投注理財產品 瀏覽:742
如何推廣自己的品牌產品 瀏覽:552
蘇州遠程指導技術咨詢包括什麼 瀏覽:625
用戶數據怎麼統計 瀏覽:840
如何寫機電產品競賽報名表 瀏覽:365
統一機油代理公司怎麼樣 瀏覽:503
塑料配色技術在哪裡學 瀏覽:832
大行程數據是什麼 瀏覽:642
綿陽職業技術學院籃球校隊如何 瀏覽:117
注冊股東信息寫哪個人 瀏覽:510