Ⅰ RNA是什麼意思
RNA的種類:
在生物體內發現主要有三種不同的RNA分子在基因的表達過程中起重要的作用。它們是信使RNA(messengerRNA,mRNA)、轉運RNA(tranfer RNA,tRNA)、核糖體RNA(ribosomal RNA,rRNA)。RNA含有四種基本鹼基,即腺嘌呤、鳥嘌呤、胞嘧啶和尿嘧啶。此外還有幾十種稀有鹼基。
RNA的一級結構主要是由AMP、GMP、CMP和UMP四種核糖核苷酸通過3',5'磷酸二酯鍵相連而成的多聚核苷酸鏈。天然RNA的二級結構,一般並不像DNA那樣都是雙螺旋結構,只有在許多區段可發生自身回折,使部分A-U、G-C鹼基配對,從而形成短的不規則的螺旋區。不配對的鹼基區膨出形成環,被排斥在雙螺旋之外。RNA中雙螺旋結構的穩定因素,也主要是鹼基的堆砌力,其次才是氫鍵。每一段雙螺旋區至少需要4~6對鹼基對才能保持穩定。在不同的RNA中,雙螺旋區所佔比例不同。【RNA的二級結構】細胞內有三類主要的核糖核酸,即:mRNA、rRNA、tRNA。它們各有特點。在大多數細胞中RNA的含量比DNA多5~8倍。【大腸桿菌RNA的性質】
mRNA
生物的遺傳信息主要貯存於DNA的鹼基序列中,但DNA並不直接決定蛋白質的合成。而在真核細胞中,DNA主要貯存於細胞核中的染色體上,而蛋白質的合成場所存在於細胞質中的核糖體上,因此需要有一種中介物質,才能把DNA 上控制蛋白質合成的遺傳信息傳遞給核糖體。現已證明,這種中介物質是一種特殊的RNA。這種RNA起著傳遞遺傳信息的作用,因而稱為信使RNA(messenger RNA,mRNA)。
mRNA的功能就是把DNA上的遺傳信息精確無誤地轉錄下來,然後再由mRNA的鹼基順序決定蛋白質的氨基酸順序,完成基因表達過程中的遺傳信息傳遞過程。在真核生物中,轉錄形成的前體RNA中含有大量非編碼序列,大約只有25%序列經加工成為mRNA,最後翻譯為蛋白質。因為這種未經加工的前體mRNA(pre-mRNA)在分子大小上差別很大,所以通常稱為不均一核RNA(heterogeneous nuclear RNA,hnRNA)。
tRNA
如果說mRNA是合成蛋白質的藍圖,則核糖體是合成蛋白質的工廠。但是,合成蛋白質的原材料——20種氨基酸與mRNA的鹼基之間缺乏特殊的親和力。因此,必須用一種特殊的RNA——轉運RNA(transfer RNA,tRNA)把氨基酸搬運到核糖體上,tRNA能根據mRNA的遺傳密碼依次准確地將它攜帶的氨基酸連結起來形成多肽鏈。每種氨基酸可與1-4種tRNA相結合,現在已知的tRNA的種類在40 種以上。
tRNA是分子最小的RNA,其分子量平均約為27000(25000-30000),由70到90個核苷酸組成。而且具有稀有鹼基的特點,稀有鹼基除假尿嘧啶核苷與次黃嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。這類稀有鹼基一般是在轉錄後,經過特殊的修飾而成的。
1969年以來,研究了來自各種不同生物,:如酵母、大腸桿菌、小麥、鼠等十幾種tRNA的結構,證明它們的鹼基序列都能折疊成三葉草形二級結構(圖3-23),而且都具有如下的共性:
① 5』末端具有G(大部分)或C。
② 3』末端都以ACC的順序終結。
③ 有一個富有鳥嘌呤的環。
④ 有一個反密碼子環,在這一環的頂端有三個暴露的鹼基,稱為反密碼子(anticodon).反密碼子可以與mRNA鏈上互補的密碼子配對。
⑤ 有一個胸腺嘧啶環。
rRNA
核糖體RNA(ribosomal RNA,rRNA)是組成核糖體的主要成分。核糖體是合成蛋白質的工廠。在大腸桿菌中,rRNA量占細胞總RNA量的75%-85%,而tRNA佔15%,mRNA僅佔3-5%。
rRNA一般與核糖體蛋白質結合在一起,形成核糖體(ribosome),如果把rRNA從核糖體上除掉,核糖體的結構就會發生塌陷。原核生物的核糖體所含的rRNA有5S、16S及23S三種。S為沉降系數(sedimentation coefficient),當用超速離心測定一個粒子的沉澱速度時,此速度與粒子的大小直徑成比例。5S含有120個核苷酸,16S含有1540個核苷酸,而23S含有2900個核苷酸。而真核生物有4種rRNA,它們分子大小分別是5S、5.8S、18S和28S,分別具有大約120、160、1900和4700個核苷酸。
rRNA是單鏈,它包含不等量的A與U、G與C,但是有廣泛的雙鏈區域。在雙鏈區,鹼基因氫鍵相連,表現為發夾式螺旋。
rRNA在蛋白質合成中的功能尚未完全明了。但16 S的rRNA3』端有一段核苷酸序列與mRNA的前導序列是互補的,這可能有助於mRNA與核糖體的結合。
snRNA
除了上述三種主要的RNA外,細胞內還有小核RNA(small nuclearRNA,snRNA)。它是真核生物轉錄後加工過程中RNA剪接體(spilceosome)的主要成分。現在發現有五種snRNA,其長度在哺乳動物中約為100-215個核苷酸。snRNA一直存在於細胞核中,與40種左右的核內蛋白質共同組成RNA剪接體,在RNA轉錄後加工中起重要作用。另外,還有端體酶RNA(telomeraseRNA),它與染色體末端的復制有關;以及反義RNA(antisenseRNA),它參與基因表達的調控。
有的RNA分子還具有生物催化作用。
上述各種RNA分子均為轉錄的產物,mRNA最後翻譯為蛋白質,而rRNA、tRNA及snRNA等並不攜帶翻譯為蛋白質的信息,其終產物就是RNA。
2006諾貝爾醫學獎成果RNA干擾機制解讀
1990年,曾有科學家給矮牽牛花插入一種催生紅色素的基因,希望能夠讓花朵更鮮艷。但意想不到的事發生了:矮牽牛花完全褪色,花瓣變成了白色!科學界對此感到極度困惑。
類似的謎團,直到美國科學家安德魯·法爾和克雷格·梅洛發現RNA(核糖核酸)干擾機制才得到科學的解釋。兩位科學家也正是因為1998年做出的這一發現而榮獲今年的諾貝爾生理學或醫學獎。
根據法爾和梅洛的發現,科學家在矮牽牛花實驗中所觀察到的奇怪現象,其實是因為生物體內某種特定基因「沉默」了。導致基因「沉默」的機制就是RNA干擾機制。
此前,RNA分子只是被當作從DNA(脫氧核糖核酸)到蛋白質的「中間人」、將遺傳信息從「藍圖」傳到「工人」手中的「信使」。但法爾和梅洛的研究讓人們認識到,RNA作用不可小視,它可以使特定基因開啟、關閉、更活躍或更不活躍,從而影響生物的體型和發育等。
諾貝爾獎評審委員會在評價法爾和梅洛的研究成果時說:「他們的發現能解釋許多令人困惑、相互矛盾的實驗觀察結果,並揭示了控制遺傳信息流動的自然機制。這開啟了一個新的研究領域。」
科學家認為,RNA干擾技術不僅是研究基因功能的一種強大工具,不久的未來,這種技術也許能用來直接從源頭上讓致病基因「沉默」,以治療癌症甚至艾滋病,在農業上也將大有可為。從這個角度來說,「沉默」真的是金。美國哈佛醫學院研究人員已用動物實驗表明,利用RNA干擾技術可治癒實驗鼠的肝炎。
目前,盡管尚有一些難題阻礙著RNA干擾技術的發展,但科學界普遍對這一新興的生物工程技術寄予厚望。這也是諾貝爾獎評審委員會為什麼不堅持研究成果要經過數十年實踐驗證的「慣例」,而破格為法爾和梅洛頒獎的原因之一。
諾貝爾生理學或醫學獎評審委員會主席戈蘭·漢松說:「我們為一種基本機制的發現頒獎。這種機制已被全世界的科學家證明是正確的,是給它發個諾貝爾獎的時候了。」
補充
核糖核酸(縮寫為RNA,即Ribonucleic Acid),存在於生物細胞以及部分病毒、類病毒中的遺傳信息載體。
RNA由核糖核苷酸經磷酯鍵縮合而成長鏈狀分子。一個核糖核苷酸分子由磷酸,核糖和鹼基構成。RNA的鹼基主要有4種,即A腺嘌呤,G鳥嘌呤,C胞嘧啶,U尿嘧啶。其中,U(尿嘧啶)取代了DNA中的T胸腺嘧啶而成為RNA的特徵鹼基。
與DNA不同,RNA一般為單鏈長分子,不形成雙螺旋結構,但是很多RNA也需要通過鹼基配對原則形成一定的二級結構乃至三級結構來行使生物學功能。RNA的鹼基配對規則基本和DNA相同,不過除了A-U、G-C配對外,G-U也可以配對。
在細胞中,根據結構功能的不同,RNA主要分三類,即tRNA(轉運RNA), rRNA(核糖體RNA), mRNA(信使RNA)。mRNA是合成蛋白質的模板,內容按照細胞核中的DNA所轉錄;tRNA是mRNA上鹼基序列(即遺傳密碼子)的識別者和氨基酸的轉運者;rRNA是組成核糖體的組分,是蛋白質合成的工作場所。
在病毒方面,很多病毒只以RNA作為其唯一的遺傳信息載體(有別於細胞生物普遍用雙鏈DNA作載體)。
1982年以來,研究表明,不少RNA,如I、II型內含子,RNase P,HDV,核糖體大亞基RNA等等有催化生化反應過程的活性,即具有酶的活性,這類RNA被稱為核酶(ribozyme)。
20世紀90年代以來,又發現了RNAi(RNA interference,RNA干擾)等等現象,證明RNA在基因表達調控中起到重要作用。
在RNA病毒中,RNA是遺傳物質,植物病毒總是含RNA。近些年在植物中陸續發現一些比病毒還小得多的浸染性致病因子,叫做類病毒。類病毒是不含蛋白質的閉環單鏈RNA分子,此外,真核細胞中還有兩類RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前體;snRNA參與hnRNA的剪接(一種加工過程)。自1965年酵母丙氨酸tRNA的鹼基序列確定以後,RNA序列測定方法不斷得到改進。目前除多種tRNA、5SrRNA、5.8SrRNA等較小的RNA外,尚有一些病毒RNA、mRNA及較大RNA的一級結構測定已完成,如噬菌體MS2RNA含3569個核苷酸。
Ⅱ rna-seq技術是什麼
RNA-seq即轉錄組測序技術,就是用高通量測序技術進行測序分析,反映出mRNA,smallRNA,noncodingRNA等或者其中一些的表達水平。
Ⅲ 什麼是RNA干擾技術
RNA干擾(RNA interference,RNAi)是正常生物體內抑制特定基因表達的一種現象,它是指當細胞中導入與內源性mRNA編碼區同源的雙鏈RNA(double stranded RNA,dsRNA)時,該mRNA發生降解而導致基因表達沉默的現象,這種現象發生在轉錄後水平,又稱為轉錄後基因沉默(post-transcriptional gene silencing,PTGS)。外源dsRNA 進入細胞後產生的小分子干擾RNA(small interfering RNA, siRNA)的反義鏈和多種核酸酶形成了沉默復合物(RNA-inced silencing complex,RISC),RISC具有結合和切割mRNA的作用而介導RNA干擾的過程。RNAi具有特異性和高效性。這種技術已經成為研究基因功能的重要工具,並將在病毒病、遺傳性疾病和腫瘤病的治療方面發揮重要作用。依據RNA干擾現象,科學家建立了RNA干擾技術,即人為設計合成針對某特定基因序列的dsRNA來關閉或抑制該基因的表達。RNA干擾已被證實是一種特異、高效、經濟的使基因表達受抑的技術手段。
Ⅳ 什麼是RNAi技術利用該技術,可以「關閉」哪些基因
RNAi就是RNA interfere(RNA 干擾),原理是通過在細胞內表達或者直接轉入一小段(一般18bp左右)與目標基因互補的RNA序列,來達到抑制目的基因的DNA轉錄的目的,從而可以下調目的基因的表達。
原則上來說,只要設計好RNAi的序列,任何基因都是可以被干擾的,當然了,關閉一說一般是達不到的,RNAi的效率一般達不到100%。
Ⅳ rnai技術的基本原理
rnai技術的基本原理如下:
1、RNAi即RNA干涉,是近年來發現的在生物體內普遍存在的一種古老的生物學現象,是由雙鏈RNA介導的、由特定酶參與的特異性基因沉默現象,它在轉錄水平、轉錄後水平和翻譯水平上阻斷基因的表達。
6、RNAi是有dsRNA參與指導的,以外源和內源mRNA為降解目標的轉基因沉默現象。
7、具有核苷酸序列特異性的自我防禦機制,是一種當外源基因導入或病毒入侵後,細胞中與轉基因或入侵病毒RNA同源的基因發生共同基因沉默的現象。
Ⅵ 什麼是RNAi技術
RNAi技術是指利用體外合成的短雙鏈RNA(21-23個核苷酸)抑制細胞內特定基因表達的技術,是轉錄後基因沉默的一種研究基因功能的有力工具。
Ⅶ rnai技術的基本原理
rnai技術的基本原理如下:
RNA干涉(RNA interference,簡稱RNAi)是指一些小的雙鏈RNA (double strand RNA,dsRNA)可以高效、 特異的阻斷體內 特定基因表達,促使mRNA降解,誘使細胞表現出特定基因缺失的表型。
RNAi是一種高效的特異性強的基因阻斷技術。可以快速分析靶基因的功能,RNAi發展迅速,已成為功能基因組研究和反向遺傳學研究的有力工具。RNAi技術被《Science》雜志評為2002年度的十大科技突破。RNAi的分子機制
①外源性基因隨機整合到宿主細胞基因組內,產生一些dsRNA。胞質中的核酸內切酶Dicer將這些dsRNA切割成多個具有特定長度和結構的短雙鏈RNA(大約21~25 bp),即siRNA。
②siRNA在RNA解旋酶的作用下解鏈成正義鏈和反義鏈,然後反義siRNA再與體內一些酶結合形成RNA誘導的沉默復合物(RISC)。
③RISC與外源性基因表達的mRNA的同源區進行特異性結合,RISC具有核酸酶的功能,在結合部位切割mRNA,被切割後的斷裂mRNA隨即降解。
④RNAi信號的放大:siRNA不僅能引導RISC切割同源單鏈mRNA,而且可作為引物與靶RNA結合並在依賴RNA的RNA聚合酶(RNdependent RNA polymerase, RdRP)作用下合成更多新的dsRNA,
新合成的dsRNA再由Dicer切割產生大量的次級siRNA,從而使RNAi的作用進一步放大,最終將靶mRNA完全降解。
Ⅷ 常用檢測RNA的分子生物學技術有哪些
PCR技術。
分子生物學技術有PCR、分子克隆、核酸電泳、瓊脂糖凝膠電泳測序、DNA,RNA提取、轉化外源DNA、體外轉錄、逆轉錄、cDNA文庫構建、原位雜交等。
Ⅸ 什麼是rnarna有哪些用處
RNA由核糖核苷酸經磷酸二酯鍵縮合而成長鏈狀分子,那麼你對RNA了解多少呢?下面就讓我來給你科普一下什麼是rna。
RNA是以DNA的一條鏈為模板,以鹼基互補配對原則,轉錄而形成的一條單鏈,主要功能是實現遺傳信息在蛋白質上的表達,是遺傳信息傳遞過程中的橋梁。tRNA的功能是攜帶符合要求的氨基酸,以mRNA為模板,合成蛋白質。
RNA由核糖核苷酸經磷酯鍵縮合而成長鏈狀分子。一個核糖核苷酸分子由磷酸,核糖和鹼基構成。RNA的鹼基主要有4種,即A腺嘌呤,G鳥嘌呤,C胞嘧啶,U尿嘧啶。其中,U尿嘧啶取代了DNA中的T胸腺嘧啶而成為RNA的特徵鹼基。
mRNA
又稱信使RNA。mRNA的功能就是把DNA上的遺傳信息精確無誤地轉錄下來,然後再由mRNA的鹼基順序決定蛋白質的氨基酸順序,完成基因表過程中的遺傳信息傳遞過程。在真核生物中,轉錄形成的前體RNA中含有大量非編碼序列,大約只有25%序列經加工成為mRNA,最後翻譯為蛋白質。因為這種未經加工的前體mRNA(pre-mRNA)在分子大小上差別很大,所以通常稱為不均一核RNA(heterogeneousnuclearRNA,hnRNA)。
tRNA
又稱轉運RNA。如果說mRNA是合成蛋白質的藍圖,則核糖體是合成蛋白質的工廠。但是,合成蛋白質的原材料——20種氨基酸與mRNA的鹼基之間缺乏特殊的親和力。因此,必須用一種特殊的RNA——轉移RNA(transferRNA,tRNA)把氨基酸搬運到核糖體上,tRNA能根據mRNA的遺傳密碼依次准確地將它攜帶的氨基酸連結起來形成多肽鏈。每種氨基酸可與1-4種tRNA相結合,已知的tRNA的種類在40種以上。
tRNA是分子最小的RNA,其分子量平均約為27000(25000-30000),由70到90個核苷酸組成。而且具有稀有鹼基的特點,稀有鹼基除假尿嘧啶核苷與次黃嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。這類稀有鹼基一般是在轉錄後,經過特殊的修飾而成的。
1969年以來,研究了來自各種不同生物,:如酵母、大腸桿菌、小麥、鼠等十幾種tRNA的結構,證明它們的鹼基序列都能折疊成三葉草形二級結構(圖3-23),而且都具有如下的共性:
①5’末端具有G(大部分)或C。
②3’末端都以ACC的順序終結。
③有一個富有鳥嘌呤的環。
④有一個反密碼子環,在這一環的頂端有三個暴露的鹼基,稱為反密碼子(anticodon).反密碼子可以與mRNA鏈上互補的密碼子配對。
⑤有一個胸腺嘧啶環。
rRNA
又稱核糖體RNA(ribosomalRNA),rRNA是組成核糖體的主要成分。核糖體是合成蛋白質的工廠。在大腸桿菌中,rRNA量占細胞總RNA量的75%-85%,而tRNA佔15%,mRNA僅佔3-5%。
rRNA一般與核糖體蛋白質結合在一起,形成核糖體(ribosome),如果把rRNA從核糖體上除掉,核糖體的結構就會發生塌陷。原核生物的核糖體所含的rRNA有5S、16S及23S三種。
S為沉降系數(sedimentationcoefficient),當用超速離心測定一個粒子的沉澱速度時,此速度與粒子的大小直徑成比例。5S含有120個核苷酸,16S含有1540個核苷酸,而23S含有2900個核苷酸。而真核生物有4種rRNA,它們分子大小分別是5S、5.8S、18S和28S,分別具有大約120、160、1900和4700個核苷酸。rRNA是單鏈,它包含不等量的A與U、G與C,但是有廣泛的雙鏈區域。在雙鏈區,鹼基因氫鍵相連,表現為發夾式螺旋。
rRNA在蛋白質合成中的功能尚未完全明了。但16S的rRNA3’端有一段核苷酸序列與mRNA的前導序列是互補的,這可能有助於mRNA與核糖體的結合。
miRNA
MicroRNAs(miRNAs)是在真核生物中發現的一類內源性的具有調控功能的非編碼RNA,其大小長約20~25個核苷酸。成熟的miRNAs是由較長的初級轉錄物經過一系列核酸酶的剪切加工而產生的,隨後組裝進RNA誘導的沉默復合體,通過鹼基互補配對的方式識別靶mRNA,並根據互補程度的不同指導沉默復合體降解靶mRNA或者阻遏靶mRNA的翻譯。最近的研究表明miRNA參與各種各樣的調節途徑,包括發育、病毒防禦、造血過程、器官形成、細胞增殖和凋亡、脂肪代謝等等。
除了上述幾種主要的RNA外還有一些其他RNA:
小分子RNA
(small RNA)
存在於真核生物細胞核和細胞質中,它們的長度為100到300個鹼基(酵母中最長的約1000個鹼基)。多的每個細胞中可含有105 ~106 個這種RNA分子,少的則不可直接檢測到, 它們由RNA聚合酶Ⅱ或RNA聚合酶Ⅲ所合成, 其中某些象mRNA一樣可被加帽。
主要有兩種類型的小分子RNA:一類是snRNA(small nuclear RNA),存在於細胞核中;另一類是scRNA(small cytoplasmic RNA),存在於細胞質中。
小分子RNA通常與蛋白質組成復合物, 在細胞的生命活動中起重要的作用, 。
①snRNA:
snRNA (smallnuclearRNA,小核RNA)。它是真核生物轉錄後加工過程中RNA剪接體(spilceosome)的主要成分。發現有五種snRNA,其長度在哺乳動物中約為100-215個核苷酸。snRNA一直存在於細胞核中,與40種左右的核內蛋白質共同組成RNA剪接體,在RNA轉錄後加工中起重要作用。某些snRNPs和剪接作用密切相關,它們分別與供體和受體剪接位點以及分支順序相互補。
其中位於核仁內的snRNA稱為核小體RNA(small uncleolar RNA),參與rRNA前體的加工及核糖體亞基的組裝。
②scRNA:
scRNA(small cytoplasmic RNA,細胞質小RNA)主要位於細胞質內,種類較多,參與蛋白質的合成和運輸。SRP顆粒就是一種由一個7SRNA和六種蛋白質組成的核糖核蛋白體顆粒,主要功能是識別信號肽, 並將核糖體引導到內質網。
端體酶RNA
端體酶RNA(telomeraseRNA),它與染色體末端的復制有關。
反義RNA
反義RNA(antisenseRNA),它參與基因表達的調控。
上述各種RNA分子均為轉錄的產物,mRNA最後翻譯為蛋白質,而rRNA、tRNA及snRNA等並不攜帶翻譯為蛋白質的信息,其終產物就是RNA。
核酶
另外還有一種特別的RNA(其分類與上述RNA分類無關)——核酶
核酶(ribozyme)一詞用於描述具有催化活性的RNA, 即化學本質是核糖核酸(RNA), 卻具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。核酶的功能很多,有的能夠切割RNA, 有的能夠切割DNA, 有些還具有RNA 連接酶、磷酸酶等活性。與蛋白質酶相比,核酶的催化效率較低,是一種較為原始的催化酶。
大多數核酶通過催化轉磷酸酯和磷酸二酯鍵水解反應參與RNA自身剪切、加工過程,也具有特異性,甚至具有Km值。
其發現是 科學家大腸桿菌RNaseP蛋白在切去部分後,在體外高濃度鎂離子的情況下,留下的RNA部分(MIRNA)具有酶活性 。
非編碼RNA
【新型生命暗物質】非編碼RNA(核糖核酸),被稱為生命體中“暗物質”。日前,中國科學技術大學單革教授實驗室發現一類新型環狀非編碼RNA,並揭示了此類非編碼RNA的功能和功能機理。成果發表在國際知名雜志《自然·結構和分子生物學》上。非編碼RNA是一大類不編碼蛋白質,但在細胞中起著調控作用的RNA分子。
正如宇宙間存在著許多既看不到也感覺不到的“暗物質”“暗能量”一樣,在生命體這個“小宇宙”中,也存在這樣的神秘“暗物質”—非編碼RNA。
越來越多的證據表明,一系列重大疾病的發生發展與非編碼RNA調控失衡相關。
環形RNA分子最近數年才引起研究人員注意,而此前的研究主要集中於線形RNA分子。單革教授實驗室發現的新型環狀非編碼RNA,被命名為外顯子-內含子環形RNA。在論文中,他們還對這類新型環狀非編碼RNA為何會成為環形而不是線形分子進行了研究,發現成環序列兩端經常會有互補的重復序列存在。
與DNA不同,RNA一般為單鏈長分子,不形成雙螺旋結構,但是很多RNA也需要通過鹼基配對原則形成一定的二級結構乃至三級結構來行使生物學功能。RNA的鹼基配對規則基本和DNA相同,不過除了A-U、G-C配對外,G-U也可以配對。
在細胞中,根據結構功能的不同,RNA主要分三類,即tRNA(轉運RNA),rRNA(核糖體RNA),mRNA(信使RNA)。mRNA是合成蛋白質的模板,內容按照細胞核中的DNA所轉錄;tRNA是mRNA上鹼基序列(即遺傳密碼子)的識別者和氨基酸的轉運者;rRNA是組成核糖體的組分,是蛋白質合成的工作場所。
在病毒方面,很多病毒只以RNA作為其唯一的遺傳信息載體(有別於細胞生物普遍用雙鏈DNA作載體)。
1982年以來,研究表明,不少RNA,如I、II型內含子,RNaseP,HDV,核糖體大亞基RNA等等有催化生化反應過程的活性,即具有酶的活性,這類RNA被稱為核酶(ribozyme)。
20世紀90年代以來,又發現了RNAi(RNAinterference,RNA干擾)等等現象,證明RNA在基因表達調控中起到重要作用。
在RNA病毒中,RNA是遺傳物質,植物病毒總是含RNA。近些年在植物中陸續發現一些比病毒還小得多的浸染性致病因子,叫做類病毒。類病毒是不含蛋白質的閉環單鏈RNA分子,此外,真核細胞中還有兩類RNA,即不均一核RNA(hnRNA)和小核RNA(snRNA)。hnRNA是mRNA的前體;snRNA參與hnRNA的剪接(一種加工過程)。自1965年酵母丙氨酸tRNA的鹼基序列確定以後,RNA序列測定方法不斷得到改進。除多種tRNA、5SrRNA、5.8SrRNA等較小的RNA外,尚有一些病毒RNA、mRNA及較大RNA的一級結構測定已完成,如噬菌體MS2RNA含3569個核苷酸。
在細胞中,根據結構功能的不同,RNA主要分三類,即tRNA、rRNA,以及mRNA。mRNA是依據DNA序列轉錄而成的蛋白質合成模板;tRNA是mRNA上遺傳密碼的識別者和氨基酸的轉運者;rRNA是組成核糖體的部分,而核糖體是蛋白質合成的機械。
Ⅹ RNA的提取方法步驟及原理.
RNA抽取一般使用Trizol法抽提:
Trizol是一種總RNA抽提試劑,內含異硫氰酸胍等物質,能迅速裂解細胞,抑制細胞釋放出的核酸酶活性。目前常用Trizol法進行提取組織或細胞中的RNA。
Trizol作用原理:
在勻質化或溶解樣品中,Trizol試劑可保持RNA的完整性,同時能破壞細胞及溶解細胞成分。加入氯仿離心後,裂解液分層成水相和有機相。RNA存在於水相中。
水相轉移後,RNA通過異丙醇沉澱回收。移去水相後,用乙醇可從中間相沉澱得到DNA,加入異丙醇沉澱可從有機相得到蛋白質。
與DNA不同,RNA一般為單鏈長分子,不形成雙螺旋結構,但是很多RNA也需要通過鹼基配對原則形成一定的二級結構乃至三級結構來行使生物學功能。
RNA的鹼基配對規則基本和DNA相同,不過除了A-U、G-C配對外,G-U也可以配對。
在細胞中,根據結構功能的不同,RNA主要分三類,即tRNA(轉運RNA),rRNA(核糖體RNA),mRNA(信使RNA)。mRNA是合成蛋白質的模板,內容按照細胞核中的DNA所轉錄;tRNA是mRNA上鹼基序列(即遺傳密碼子)的識別者和氨基酸的轉運者;rRNA是組成核糖體的組分,是蛋白質合成的工作場所。