導航:首頁 > 信息技術 > wsn需要解決的關鍵技術有哪些

wsn需要解決的關鍵技術有哪些

發布時間:2022-10-04 14:43:58

① 什麼是無線感測技術

科技發展的腳步越來越快,人類已經置身於信息時代。作為信息獲取的一種重要、基本的技術——感測器技術,也得到了極大的發展。無線感測器網路是一種全新的信息獲取和處理技術,感測器節點可以連續不斷地進行數據採集、事件檢測、事件標識、位置監測和節點控制,感測器節點的這些特性和無線連接方式使得無線感測器網路的應用前景非常廣闊,隨著無線感測器網路的深人研究和廣泛應用,無線感測器網路將逐漸深入到人類生活的各個領域。感測器信息獲取技術已經從過去的單一化漸漸向集成化、微型化和網路化方向發展,並將會帶來一場信息革命。
【關鍵詞】:信息時代、感測器技術、無線連接、信息革命
1引言
無線感測器網路(WSN, Wireless Sensor Net-work )綜合了感測器技術、嵌入式計算技術、分布式信息處理技術和通信技術,能夠協作地實時監測、感知和採集網路分布區域內的各種環境或監測對象的信息,並對這些信息進行處理,獲得詳盡而准確的信息,傳送到需要這些信息的用戶。
無線感測器網路被認為是21世紀最重要的技術之一,它將會對人類未來的生活方式產生深遠影響。本文將先介紹無線感測器網路的概念和特點,再探討WSN在人們生活中的一些應用模型以及在發展中所遇到的一些問題。
2無線感測器網路
2.1無線感測器網路簡介
無線感測器網路(Wireless Sensor Network,WSN)是由許多個功能相同或不同的無線感測器節點通過自組織方式形成的無線網路。每個感測器節點由數據採集模塊(感測器、A/D轉換器)、數據處理和控制模塊(微處理器、存儲器)、通信模塊(無線收發器)以及供電模塊(電池、DC/DC能量轉換器)等組成。節點在網路中可以充當數據採集者、數據中轉站或簇頭節點(cluster-head node)的角色。作為數據採集者,數據採集模塊收集周圍環境的數據(如溫度和濕度),通過通信路由協議直接或間接將數據傳輸給遠方基站(base station)或匯節點(sink node);作為數據中轉站,節點除了完成採集任務外,還要接收鄰居節點的數據,並將其轉發到距離基站最近的鄰居節點或者直接轉發到基站或匯節點,簇頭節點負責收集該類內所有節點採集的數據,經數據融合後,發送到基站或匯節點。這些感測器節點可以任意地部署在監測區域內,彼此通過無線通信形成一個多跳的、自組織的網路來完成信息採集、數據傳輸和信息處理。無線感測器網路通過節點的數據採集和傳輸,可以在任何時間、任何地點獲取對象的信息,對環境的變化具有很強的魯棒性,因此它具有廣泛的應用前景,可以應用於軍事情報偵察、工業生產過程式控制制、環境監測和保護以及現代化交通管理等領域。
2.2無線感測器網路的節點結構及網路體系結構
網路體系結構是網路的協議分層以及網路協議的集合,是對網路及其部件所應完成功能的定義和描述,對無線感測器網路來說,其網路體系結構不同於傳統的計算機網路和通信網路。網路體系結構由分層的網路通信協議、感測器網路管理以及應用支撐技術三部分組成。
2.2.1 感測器網路節點結構
感測器網路節點的基本組成包括如下4個基本單元:感測單元(由感測器和模數轉換功能模塊組成)、處理單元(包括CPU、存儲器、嵌入式操作系統等)、通信單元(由無線通信模塊組成)以及電源。此外,可以選擇的其他功能單元包括:定位系統、移動系統以及電源自供電系統等。
2.2.2 感測器網路的體系結構
網路體系結構是網路的協議分層以及網路協議的集合,是對網路及其部件所應完成功能的定義和描述,對無線感測器網路來說,其網路體系結構不同於傳統的計算機網路和通信網路。網路體系結構由分層的網路通信協議、感測器網路管理以及應用支撐技術三部分組成。分層的網路通信協議結構類似於TCP/IP協議體系結構;感測器網路管理技術主要是對感測器節點自身的管理以及用戶對感測器網路的管理;在分層協議和網路管理技術的基礎上,支持了感測器網路的應用支撐技術。
2.3無線感測器網路的物理組成
無線感測器網路的感測器節點個數通常很多,它們不僅體積小、成本低,另外還要求感測器節點功耗非常低,以滿足用電池即可維持長時間的工作狀態。因此這些特點決定了對感測器節點的設計需要在盡可能簡單的情況下滿足應用需求。無線感測器節點是由硬體層與軟體層的配合完成任務。
2.3.1 無線感測器硬體層
硬體層一般都包括以下四個單元:供電單元、數據採集單元(包括感測器和A/D模數轉換器件)、數據處理單元(包括存儲器和微控制器)、無線通信單元。微控 制器作為感測器節點運「心臟」,在上面運行著嵌入式系統軟體,從而對另外三個單元的工作進行控制。在硬體的選取上,盡量採用低功耗器件,還可以考慮在無數 據採集和無數據通信的時候命令微控制器進入「睡眠」狀態並可切斷無線通信單元的部分電源,從而降低功耗。
2.3.2 無線感測器軟體層
無線感測器網路的軟體層包括三個層次:硬體抽象層、系統服務層和應用層。硬體抽象層用來實現對硬體平台(供電、數據採集、數據處理和無線通信單元)的抽象,為上層屏蔽底層硬體細節,簡化系統平台移植。系統服務層包括通信服務、感測服務、能耗管理服務、實時內核等四部分,在這個層次中除了實現操作系統如任務調度、信號量等內核服務外,還將完成各種路由、安全演算法的實現,並支持各類通信傳輸協議。應用層是由用戶根據具體應用的需要定義,利用系統服務層提供的介面,能方便的設計出上層軟體。
軟體層用來控制硬體層,是整個感測器的「大腦」,除了最基本的數據採集和發送之外,根據應用的場合,還需要實現關於網路拓撲、自組織、路由選擇、能耗節 約、錯誤處理、可靠性保證等一系列的演算法與設計。對於一些簡單的應用可以使用單一循環邏輯的軟體來完成。而一些復雜性較高的應用場景就有必要使用針對無線感測器網路特點的嵌入式操作系統。。
2.4 無線感測器網路主要特點 1.自組織網路
在無線感測器網路應用中,通常情況下感測器節點被放置在沒有基礎設備的地方。感測器節點的位置不能預先精確設定。節點之間的相互鄰居關系也不能預先知道,如通過飛機撒播大量感測器節點在面積廣大的原始森林中,或隨意放置到人不可到達或危險的區域。這樣就要求感測器節點具有自組織的能力,能夠自動進行配置和管理,通過拓撲控制機制和網路協議自動形成轉發監測數據的多跳無線網路系統。在無線感測器網路使用過程中,部分感測器節點由於能量耗盡或環境因素造成失效,也有一些感測器節點為了彌補失效節點、增加監測精度而補充到網路中,這樣在無線感測器網路中的節點個數就動態的增加或減少,從而使網路的拓撲結構隨之動態變化。無線感測器網路的自組織性要能夠適應這種網路拓撲結構的動態變化。
2.多跳路由
網路中節點通信距離有限,一般在幾十到幾百米范圍內,節點只能與它的鄰居直接通信。如果希望與其射頻覆蓋范圍之外的節點進行通信,則需要通過中間節點進行路由。擬定網路的多跳路由使用網關和路由器來實現,而無線感測器網路中的多跳路由是由普通網路節點完成的,沒有專門的路由設備。這樣每個節點既可以是信息的發起者,也可以是信息的轉發者。
3.動態網路拓撲
無線感測器網路是一個動態的網路,節點可以隨處移動;一個節點可能會因為電池能量耗盡或其他故障,退出網路運行;一個節點也可能由於工作的需要而被添加到網路中。在某些特殊的應用中,無線感測器網路是移動的,感測器節點可能會因能量消耗完或其他故障而終止工作,這些因素都會使網路拓撲發生變化。
4.以數據為中心的網路
感測器網路是一個任務型的網路,脫離感測器網路談論感測器節點沒有任何意義。感測器網路中的節點採用編號標識,節點編號是否需要全網唯一取決於網路通信協議的設計。由於感測器節點隨機部署,構成的感測器與節點編號之間的關系是完全動態的,表現為節點編號與節點位置沒有必然聯系。用戶使用感測器網路查詢事件時,直接將所關心的事件通告給網路,而不是通告給某個確定編號的節點。網路在獲得指定事件的信息後匯報給用戶。這種以數據本身作為查詢或者傳輸線索的思想更接近於自然語言交流的習慣。所以通常說感測器是一個以數據為中心的網路。
2.5 無線感測器網路的發展現狀
早在上世紀70年代,就出現了將傳統感測器採用點對點傳輸、連接感測控制器而構成感測器網路雛形,我們把它歸之為第一代感測器網路。隨著相關學科的不斷發展和進步,感測器網路同時還具有了獲取多種信息信號的綜合處理能力,並通過與感測控制器的相聯,組成了有信息綜合和處理能力的感測器網路,這是第二代感測器網路。而從上世紀末開始,現場匯流排技術開始應用於感測器網路,人們用其組建智能化感測器網路,大量多功能感測器被運用,並使用無線技術連接,無線感測器網路逐漸形成。
近年來,無線通信技術和微電子技術的不斷進步,大大地推動了無線感測器網路的迅猛發展。無線感測器網路是任意部署在一定地理范圍內的大量體積微小的感測器節點所組成的自組織網路。這些微小的節點具有數據採集,信號處理和無線通信等功能,彼此通過無線通信,相互協調形成一個智能的感測網路。無線感測器網路通過節點的數據採集和傳輸,可以在任何時間,任何地點獲取對象的信息,對環境的變化具有很強的魯棒性。因此,通過合理的節點部署和網路設計,無線感測器網路能夠在危險,惡劣的環境中執行任務,比如敵方軍事報偵察。但是,由於節點本身設計製造成本低,體積微小的特點,單個節點只能攜帶有限的能量,進行簡單的局部信號處理及短距離的無線通信。因此,如何設計高效的分布式信號處理演算法以降低網路中能量和帶寬的消耗已成為當前無線感測器網路研究的熱點問題之一。
3 無線感測器網路的關鍵技術
無線感測器網路作為當今信息領域新的研究熱點,有非常多的關鍵技術有待發現和研究。而功耗和安全問題對於無線感測器網路來說,是兩個最重要的性能指標,所以WSN的關鍵技術必然以降低網路功耗和確保網路安全為主線。下面介紹網路拓撲控制、數據融合等部分關鍵技術。
3.1網路拓撲控制
對於自組織的感測器網路而言,網路拓撲控制具有特別重要的意義。通過拓撲控制自動生成的良好的網路拓撲結構,能夠提高路由協議和MAC協議的效率,可為數據融合、目標定位等很多方面奠定基礎,有利於節省節點的能量來延長網路的生存期。所以,拓撲控制是WSN研究的核心技術之一。WSN拓撲控制目前主要研究的問題是在滿足網路覆蓋度和連通度的前提下,通過功率控制和骨幹網節點選擇,剔除節點之間不必要的無線通信鏈路,生成一個高效的數據轉發的網路拓撲結構。拓撲控制分為節點功率控制和層次型拓撲結構控制兩個方面。功率控制機制調節網路中每個節點的發射功率,在滿足網路連通度的前提下,減少節點的發送功率,均衡節點單跳可達的鄰居數目;目前已經提出了以鄰居節點度為參考依據的演算法,以及利用鄰近圖思想生成拓撲結構的DRNG和DLSS演算法。層次型的拓撲控制利用分簇機制,讓一些節點作為簇頭,由簇頭形成一個處理並轉發數據的骨幹網,其他非骨幹網節點可以暫時關閉通信模塊,進入休眠狀態以節省能量。
3.2 數據融合
在無線感測器網路中,節點感測器採集數據並將它發送到網路終端。但是在數據的採集和傳輸過程中,總要對採集的數據進行處理,因此存在如何對採集的數據進行處理、融合的問題。
如果完全在本地節點上處理採集的數據而只發送處理後的結果,可以降低傳輸數據的功耗,但增加了本地節點處理器的功耗;如果傳輸原始採集的數據,可以降低節點處理器的功耗但增加了節點傳輸數據的功耗。因此,如何對採集的數據進行處理與融合對降低節點能耗起到相當大的作用。通常網路中的感測器數量很多,感測器採集的數據具有一定的冗餘度,因此將多個節點採集的數據相互結合起來進行處理可以降低整個網路數據的傳輸量,有效降低系統功耗,問題是如何尋找本地節點處理與節點聯合處理的平衡點。
3.3 定位技術
位置信息是感測器節點採集數據中不可缺少的部分,沒有位置信息的監測消息通常毫無意義。為了提供有效位置信息,隨機部署的感測器節點必須能夠在布置後確定自身位置。由於感測器節點存在資源有限、隨機部署、通信易受環境干擾甚至節點失效等特點,定位機制必須滿足自組織性、健壯性、能量高效、分布式計算等要求。現有的WSN定位演算法根據定位機制的不同,可以分為基於測距的方法與不基於測距的方法兩類。基於測距的定位機制利用到達時間延遲、信號到達時差和接收信號強度來估計距離或來波方向,然後使用三邊測量法或最大似然估計等計算未知節點的位置。而不基於測距的定位機制無需距離或角度信息,或者不用直接測量這些信息,僅根據網路的連通性等信息實現節點的定位。距離無關的定位機制的定位性受環境因素的影響小,雖然定位誤差相應有所增加,但定位精度能夠滿足多數感測器網路應用的需求,是目前大家重點關注的定位機制。
3.4 無線通信技術
感測器網路需要低功耗短距離的無線通信技術。IEEE802.15.4標準是針對低速無線個人域網路的無線通信標准,把低功耗、低成本作為設計的主要目標。由於IEEE802.15.4標準的網路特徵與無線感測器網路存在很多相似之處,故很多研究機構把它作為無線感測器網路的無線通信平台。另外,超寬頻無線通信以其高速率、低功耗、抗多徑、低成本等諸多優勢,已成為室內短距離無線網路的首選方案,這為WSN的數據傳輸開辟了一種嶄新的方案。
3.5 時間同步
感測器網路中由於節能策略,節點在大部分時間是休眠的,所以要求解決通信同步問題,即通信節點雙方需要在通信時同時喚醒。另外,感測器網路是一個分布式網路,所有節點在通信上地位對等,沒有優先順序可言。所以要讓整個網路能夠工作在有效狀態,往往需要做到全網或者一定范圍內所有節點的同步,而不是通信雙方的簡單同步。
4 無線感測器網路的應用
雖然無線感測器網路的大規模商業應用,由於技術等方面的制約還有待時日,但是最近幾年,隨著計算成本的下降以及微處理器體積越來越小,已經為數不少的無線感測器網路開始投入使用。目前無線感測器網路的應用主要集中在以下領域:
4.1 環境的監測和保護
隨著人們對於環境問題的關注程度越來越高,需要採集的環境數據也越來越多,無線感測器網路的出現為隨機性研究數據的獲取提供了便利,並且還可以避免傳統數據收集方式給環境帶來的侵入式破壞。比如,英特爾研究實驗室研究人員曾經將32個小型感測器連進互聯網,以測出緬因州"大鴨島"上氣候的變化情況,用來評價一種海燕巢的條件。無線感測器網路還可以跟蹤候鳥和昆蟲的遷移,研究環境變化對農作物的影響,監測海洋、大氣和土壤的成分等。
4.2 醫療護理
無線感測器網路在醫療研究、護理領域也可以大展身手。羅徹斯特大學的科學家使用無線感測器創建了一個智能醫療房間,使用微塵來測量居住者的重要徵兆(血壓、脈搏和呼吸)、睡覺姿勢以及每天24小時的活動狀況。英特爾公司也推出了無線感測器網路的家庭護理技術,該技術是作為探討應對老齡化社會的技術項目Center for Aging Services Technologies(CAST)的一個環節開發的。該系統通過在鞋、傢具以家用電器等家中道具和設備中嵌入半導體感測器,幫助老齡人士、阿爾茨海默氏病患者以及殘障人士的家庭生活。利用無線通信將各感測器聯網可高效傳遞必要的信息從而方便接受護理,而且還可以減輕護理人員的負擔。英特爾主管預防性健康保險研究的董事EricDishman稱,"在開發家庭用護理技術方面,無線感測器網路是非常有前途的領域"。
4.3 軍事領域
由於無線感測器網路具有密集型、隨機分布的特點,使其非常適合應用於惡劣的戰場環境中,使其非常適合應用於惡劣的戰場環境中,包括偵察敵情、監控兵力、裝備和物資,判斷生物化學攻擊等多方面用途。美國國防部遠景計劃研究局已投資幾千萬美元,幫助大學進行"智能塵埃"感測器技術的研發。哈伯研究公司總裁阿爾門丁格預測:智能塵埃式感測器及有關的技術銷售將從2004年的1000萬美元增加到2010年的幾十億美元。
4.4 建築結構監測
無線感測器網路用於監測建築物的健康狀況,不僅成本低廉,而且能解決傳統監測布線復雜、線路老化、易受損壞等問題。斯坦福大學提出了基於無線感測器網路的建築物監測系統,採用基於分簇結構的兩層網路系統,感測器節點由EVK915模塊和ADXL210加速度感測器構成,分簇首節點由Proxim Rangel LAN2無線調制器和EVK915連接而成。南加州大學的一種監測建築物的無線感測器網路系統NETSHM,該系統除了監測建築物的健康狀況外,並且能夠定位出建築物受損傷的位置。
4.5 自然災害的預防
在一些容易發生泥石流、滑坡等自然災害的地方,使用無線感測網路及時、長期地對這些地方的地形變化、各種環境因素的監測,採集相關數據並進行適當的分析,當災難將要發生時,我們就可以提前發出預警報告以做好准備或採取相應措施防止它們進一步的發生。
4.6 企業、家庭監控
在企業、家庭布設無線感測網路,可以實時地監控人員的流動和環境的變化,有利於企業、家庭採取有效的安全防護措施和災難應變措施。此外,國內還出現了大量的其他領域的應用,比如無線感測網路在地下無人採煤安全監測系統的應用,無線感測網路在溫室網路信息採集分析系統中的應用。
5.存在的問題
5.1 面臨的技術難題
就目前無線感測器網路的技術水平來說,無線感測器網路正常運行並大量投入使用還面臨著許多問題:
(1)網路內通信問題
無線感測器網路內正常通信聯系中,信號可能被一些障礙物或其他電子信號干擾而受到影響,怎麼安全有效的進行通信是個有待研究的問題。
(2)成本問題
在一個無線感測器網路裡面,需要使用數量龐大的微型感測器,這樣的話成本會制約其發展。
(3)系統能量供應問題
目前主要的解決方案有:使用高能電池;降低感測功率;此外還有感測器網路的自我能量收集技術和電池無線充電技術,其中後兩者備受關注。
(4)高效的無線感測器網路結構
無線感測器網路的網路結構是組織無線感測器的成網技術,有多種形態和方式,合理的無線感測器網路可以最大限度的利用資源。在這裡面,還包括網路安全協議問題和大規模感測器網路中的節點移動性管理等諸多問題有待解決。
5.2 安全問題
感測器網路多用於軍事、商業領域,安全性是其重要的研究內容。由於感測器網路中節點隨機部署、網路拓撲的動態性以及信道的不穩定性,使傳統的安全機制無法適用。因此需要設計新型的網路安全機制,可借鑒擴頻通信、接入認證/鑒權、數據水印、數據加密等技術。目前,保證網路安全性的方法也不少。
(1)藉助特殊的無線感測器終端。採用PTD(Personal Trust Device)作為感測器網路的終端,在網路中設立認證伺服器來提供感測器需要的服務,而在PTD和伺服器之間建立認證和加密體系,只有在伺服器注冊過的PTD終端才能獲得服務,未注冊的則不能,從而保證系統安全。通常,這種系統用在家庭環境中.
(2)採用安全罩(Secure Overlay)。採用一種稱為SCANv2(Secure Content Addressable Network Version 2)安全內容網路定址的安全罩,來實現無線感測器網路的安全。SCANv2其實是在蓋在實際網路層上的一個虛擬結構,通過採用Hash函數,把實際網路中的節點映射到這個罩空間之上,某一區域或某種功能的節點在罩空間的某一個共同的特定位置。用戶在從網路中獲取服務時,需要通過相應的安全認證進入罩空間,再進一步通過加密解密過程從這個映射空間進入實際網路中獲得所需服務。
6 結束語
無線感測器網路是一種新的信息獲取和處理技術,在特殊領域,它有著傳統技術不可比擬的優勢,人們對它的研究尚處於起步階段。無線感測器網路有著十分廣泛的應用前景,它不僅在工業、農業、軍事、環境、醫療等傳統領域有具有巨大的運用價值,在未來還將在許多新興領域體現其優越性,如家用、保健、交通等領域。我們可以大膽的預見,將來無線感測器網路將無處不在,將完全融入我們的生活。比如微型感測器網路最終可能將家用電器、個人電腦和其他日常用品同互聯網相連,實現遠距離跟蹤,家庭採用無線感測器網路負責安全調控、節電等,其應用可以涉及到人類日常生活和社會生產活動的所有領域。對這些網路的進一步研究,將滿足中國未來高技術民用和軍事發展的需要,不僅具有重要的社會和經濟意義,也具有十分重要的戰略意義。
但是,我們還應該清楚的認識到,無線感測器網路才剛剛開始發展,它的技術、應用都還還遠談不上成熟,國內企業應該抓住商機,加大投入力度,推動整個行業的發展。
摘錄於網路

② 物聯網涉及的關鍵技術有哪些,並分別描述

物聯網是一個集合,而旗下各類感測器(射頻識別等感測技術)、各類有/無線感測網路、智能聯動等技術才是物聯網的根本。
感測器技術 感測技術同計算機技術與通信技術一起被稱為信息技術的三大技術。從仿生學觀點看,如果把計算機看成處理和識別信息的「大腦」,把通信系統看成傳遞信息的「神經系統」的話,那麼感測器就是「感覺器官」。微型無線感測技術以及以此組件的感測網是物聯網感知的重要技術手段。
射頻識別(RFID)技術 射頻識別(Radio Frequency Identification)是通過無線電信號識別特定目標並讀寫相關數據的無線通訊技術。在國內,RFID已經在身份證、電子收費系統和物流管理等領域有了廣泛應用。RFID技術市場應用成熟,標簽成本低廉,但RFID一般不具備數據採集功能,多用來進行物品的甄別和屬性的存儲,且在金屬和液體環境下應用受限,RFID技術屬於物聯網重要的信息採集技術之一。
WSN(無線感測網路)技術 無線感測器網路(Wireless Sensor Network,或稱神經末梢網)主要有ZigBee、藍牙、NFC、Wi-Fi等表現形式。上海秀派電子科技有限公司董事長兼總經理宋福鑫介紹到:「無線感測器網路是一種由獨立分布的節點以及網關構成的感測器網路,安放在不同地點的感測器節點不斷採集外界的物理信息,如溫度、聲音、震動等,相互獨立的節點之間通過無線網路進行通信。無線感測器網路的每個節點都能夠實現數據採集和數據的簡單處理,還能接收來自其他節點的數據,並最終將數據發送到網關,再從網關獲取數據,查看歷史數據記錄或進行分析。」

③ wsn安全性包括哪六個方面

1.動態性網路。WSN具有很強的網路動態性。由於能量、環境等問題,會使感測器節點死亡。
2.硬體資源有限。節點由於受到價格、體積和功耗的限制,在通信能力、計算能力和內存空間等方面。
3.能量受限。網路節點由電池供電,電池的容量一般不是很大。由於應用領域的特殊性,不能經常給。
4.大規模網路。為了對一個區域執行高密度的監測、感知任務,WSN往往將成千上萬,甚至更多。
5.其他。

④ WSN是什麼

WSN是wireless sensor network的簡稱,即無線感測器網路。
無線感測器網路(Wireless Sensor Network, WSN)就是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成的一個多跳的自組織的網路系統,其目的是協作地感知、採集和處理網路覆蓋區域中被感知對象的信息,並發送給觀察者。感測器、感知對象和觀察者構成了無線感測器網路的三個要素。
隨著微機電系統(Micro-Electro-Mechanism System, MEMS)、片上系統(SOC, System on Chip)、無線通信和低功耗嵌入式技術的飛速發展,孕育出無線感測器網路(Wireless Sensor Networks, WSN),並以其低功耗、低成本、分布式和自組織的特點帶來了信息感知的一場變革。無線感測器網路就是由部署在監測區域內大量的廉價微型感測器節點組成,通過無線通信方式形成的一個多跳自組織網路。
很多人都認為,這項技術的重要性可與網際網路相媲美:正如網際網路使得計算機能夠訪問各種數字信息而可以不管其保存在什麼地方,感測器網路將能擴展人們與現實世界進行遠程交互的能力。它甚至被人稱為一種全新類型的計算機系統,這就是因為它區別於過去硬體的可到處散布的特點以及集體分析能力。然而從很多方面來說,現在的無線感測器網路就如同遠在 1970 年的網際網路,那時網際網路僅僅連接了不到 200所大學和軍事實驗室,並且研究者還在試驗各種通訊協議和定址方案。而現在,大多數感測器網路只連接了不到 100個節點,更多的節點以及通訊線路會使其變得十分復雜難纏而無法正常工作。另外一個原因是單個感測器節點的價格目前還並不低廉,而且電池壽命在最好的情況下也只能維持幾個月。不過這些問題並不是不可逾越的,一些無線感測器網路的產品已經上市,並且具備引人入勝的功能的新產品也會在幾年之內出現。
無線感測器網路所具有的眾多類型的感測器,可探測包括地震、電磁、溫度、濕度、雜訊、光強度、壓力、土壤成分、移動物體的大小、速度和方向等周邊環境中多種多樣的現象。基於MEMS的微感測技術和無線聯網技術為無線感測器網路賦予了廣闊的應用前景。這些潛在的應用領域可以歸納為:軍事、航空、反恐、防爆、救災、環境、醫療、保健、家居、工業、商業等領域。

⑤ wsn功率控制技術有哪些基於節點度的功率控制的基本思想是什麼

一、遠近效應
功率控制的目的是為了克服遠近效應。遠近效應現象是指如果沒有功率控制,距離基站近的一個UE就能阻塞整個小區,而距離NodeB遠的UE信號將被逗淹沒地。

上行鏈路中,如果小區內所有UE以相同的功率進行發射,由於每個UE與 Node B的距離和路徑不同,信號到達Node
B就會有不同的衰耗,從而導致離Node B較近的UE,Node B收到的信號強,較遠的Node B收到的信號弱,這樣就會造成Node
B所接收到的信號的強度相差很大。由於 WCDMA是同頻接收系統,較遠的弱信號到達Node
B後可能不會被解擴出來,造成弱信號逗淹沒地在強信號中,而無法正常工作。
CDMA自從提出來以後一直沒有得到大規模應用的主要原因,就是無法克服遠近效應。從圖1可知,採用功率控制後,每個UE到達基站的功率基本相當,這樣,每個UE的信號到達NodeB後,都能被正確地解調出來。
二、功率控制的目的
WCDMA
採用寬頻擴頻技術,是個自干擾系統。通過功率控制,降低了多址干擾、克服遠近效應以及衰落的影響,從而保證了上下行鏈路的質量。例如:在保證QoS的前提
下降低某個UE的發射功率,將不會影響其上下行數據的接收質量,但結果卻減少了系統干擾,其他UE的上下行鏈路質量將得到提高。功率控制給系統帶來以下優
點:
(1)克服陰影衰落和快衰落。陰影衰落是由於建築物的阻擋而產生的衰落,衰落的變化比較慢;而快衰落是由於無線傳播環境的惡劣,UE和
NodeB之間的發射信號可能要經過多次的反射、散射和折射才能到達接受端而造成。對於陰影衰落,可以提高發射功率來克服;而快速功控的速度是1500次
/秒,功控的速度可能高於快衰落,從而克服了快衰落、給系統帶來增益,並保證了UE在移動狀態下的接受質量,同時也能減小對相鄰小區的干擾。
(2)降低網路干擾,提高系統的質量和容量。功率控制的結果使UE和NodeB之間的信號以最低功率發射,這樣系統內的干擾就會最小,從而提高了系統的容量和質量。
(3)由於手機以最小的發射功率和NodeB保持聯系,這樣手機電池的使用時間將會大大延長。
三、功率控制的分類

WCDMA系統中,功率控制按方向分為上行(或稱為反向)功率控制和下行(或稱為前向)功率控制兩類;按移動台和基站是否同時參與又分為開環功率控制和閉
環功率控制兩大類。閉環功控是指發射端根據接收端送來的反饋信息對發射功率進行控制的過程;而開環功控不需要接收端的反饋,發射端根據自身測量得到的信息
對發射功率進行控制。
1.開環功率控制
開環功率控制是根據上行鏈路的干擾情況估算下行鏈路,或是根據下行鏈路的干擾情況估算上行鏈路,是單向不閉合的。

圖2所示,UE測量公共導頻信道CPICH的接收功率並估算NodeB的初始發射功率,然後計算出路徑損耗,根據廣播信道BCH得出干擾水平和解調門限,
最後UE計算出上行初始發射功率作為隨機接入中的前綴傳輸功率,並在選擇的上行接入時隙上傳送(隨機接入過程)。開環功率控制實際上是根據下行鏈路的功率
測量對路徑損耗和干擾水平進行估算而得出上行的初始發射功率,所以,初始的上行發射功率只是相對准確值。
WCDMA系統採用的FDD模式,上行采
用1920~1980MHz、下行採用2110~2170MHz,上下行的頻段相差190MHz。由於上行和下行鏈路的信道衰落情況是完全不同的,所以,
開環功率控制只能起到粗略控制的作用。但開環功控卻能相對准確地計算初始發射功率,從而加速了其收斂時間,降低了對系統負載的沖擊;而且,在3GPP協議
中,要求開環功率控制的控制方差在10dB內就可以接受。
2.上行內環功控
內環功率控制是快速閉環功率控制,在NodeB與UE之間的物理層進行,上行內環功率控制的目的是使基站接收到每個UE信號的比特能量相等。見圖3。
圖3 上行內環功控
首先,NodeB測量接受到的上行信號的信干比(SIR),並和設置的目標SIR(目標SIR由RNC下發給NodeB)相比較,如果測量SIR小於目標SIR,NodeB在下行的物理信道DPCH中的TPC標識通知UE提高發射功率,反之,通知UE降低發射功率。

為WCDMA在空中傳輸以無線幀為單位,每一幀包含有15個時隙,傳輸時間為10ms,所以,每時隙傳輸的頻率為1500次/秒;而DPCH是在無限幀中
的每個時隙中傳送,所以其傳送的頻率為每秒1500次,而且上行內環功控的標識位TPC是包含在DPCH裡面,所以,內環功控的時間也是1500次/秒。
3.上行外環功控
上行外環功控是RNC動態地調整內環功控的SIR目標值,其目的是使每條鏈路的通信質量基本保持在設定值,使接收到數據的BLER滿足QoS要求。見圖4。
圖4 上行外環功控

行外環功控由RNC執行。RNC測量從NodeB傳送來數據的BLER(誤塊率)並和目標BLER(QoS中的參數,由核心網下發)相比較,如果測量
BLER大於目標BLER,RNC重新設置目標TAR(調高TAR)並下發到NodeB;反之,RNC調低TAR並下發到NodeB。外環功率控制的周期
一般在一個 TTI(10ms、20ms、40ms、80ms)的量級,即 10~100Hz。
由於無線環境的復雜性,僅根據SIR值進行功率控制並不能真正反映鏈路的質量。而且,網路的通信質量是通過提供服務中的QoS來衡量,而QoS的表徵量為BLER,而非SIR。所以,上行外環功控是根據實際的BLER值來動態調整目標SIR,從而滿足Qos質量要求。
4.下行閉環功控

行閉環功控和上行閉環功控的原理相似。下行內環功率控制由手機控制,目的使手機接收到NodeB信號的比特能量相等,以解決下行功率受限;下行外環功控是
由UE的層3控制,通過測量下行數據的BLER值,進而調整UE物理層的目標SIR值,最終達到UE接收到數據的BLER值滿足QoS要求。
四、總結
WCDMA
是個自干擾系統,功率是最終的無線資源,而無線資源管理的過程就是控制自身系統內干擾的過程,所以,最有效地使用無線資源的唯一手段就是嚴格控制功率的使
用。但控制功率的使用是矛盾的:一方面它能提高針對某用戶的發射功率、改善用戶的服務質量;另一方面,由於WCDMA的自干擾性,這種提高會帶給其他用戶
干擾的增加,而導致介紹質量的下降。
所以,在WCDMA系統中,在保證了用戶要求的QoS前提下,功率控制的使用,最大限度地降低發射功率、減少系統干擾、增加系統容量,而這正是WCDMA技術的關鍵。

⑥ 物聯網網路層的關鍵技術是什麼

在物聯網應用中有三項關鍵技術:

1、感測器技術,這也是計算機應用中的關鍵技術。大家都知道,到為止絕大部分計算機處理的都是數字信號。自從有計算機以來就需要感測器把模擬信號轉換成數字信號計算機才能處理。

2、RFID標簽也是一種感測器技術,RFID技術是融合了無線射頻技術和嵌入式技術為一體的綜合技術,RFID在自動識別、物品物流管理有著廣闊的應用前景。

3、嵌入式系統技術是綜合了計算機軟硬體、感測器技術、集成電路技術、電子應用技術為一體的復雜技術。經過幾十年的演變,以嵌入式系統為特徵的智能終端產品隨處可見;小到人們身邊的MP3,大到航天航空的衛星系統。嵌入式系統正在改變著人們的生活,推動著工業生產以及國防工業的發展。如果把物聯網用人體做一個簡單比喻,感測器相當於人的眼睛、鼻子、皮膚等感官,網路就是神經系統用來傳遞信息,嵌入式系統則是人的大腦,在接收到信息後要進行分類處理。這個例子很形象的描述了感測器、嵌入式系統在物聯網中的位置與作用。

⑦ 物聯網的感知層包括哪些技術

物聯網層次結構分為三層,自下向上依次是:感知層、網路層、應用層。感知層是物聯網的核心,是信息採集的關鍵部分。感知層位於物聯網三層結構中的最底層,其功能為「感知」,即通過感測網路獲取環境信息。感知層是物聯網的核心,是信息採集的關鍵部分。
感知層是物聯網的皮膚和五官-用於識別 物體,採集信息。感知層包括二維碼標簽和識讀器、RFID標簽和讀寫器、攝像頭、GPS、感測器、M2M終端、感測器網關等,主要功能是識別物體、採集信息,與人體結構中皮膚和五官的作用類似。
對我們人類而言,是使用五官和皮膚,通過視覺、味覺、嗅覺、聽覺和觸覺感知外部世界。而感知層就是物聯網的五官和皮膚,用於識別外界物體和採集信息。感知層解決的是人類世界和物理世界的數據獲取問題。它首先通過感測器、數碼相機等設備,採集外部物理世界的數據,然後通過RFID、條碼、工業現場匯流排、藍牙、紅外等短距離傳輸技術傳遞數據。感知層所需要的關鍵技術包括檢測技術、短距離無線通信技術等。
感知層由基本的感應器件(例如RFID標簽和讀寫器、各類感測器、攝像頭、GPS、二維碼標簽和識讀器等基本標識和感測器件組成)以及感應器組成的網路(例如RFID網路、感測器網路等)兩大部分組成。該層的核心技術包括射頻技術、新興感測技術、無線網路組網技術、現場匯流排控制技術(FCS)等,涉及的核心產品包括感測器、電子標簽、感測器節點、無線路由器、無線網關等。
一些感知層常見的關鍵技術如下:
l 感測器:感測器是物聯網中獲得信息的主要設備,它利用各種機制把被測量轉換為電信號,然後由相應信號處理裝置進行處理,並產生響應動作。常見的感測器包括溫度、濕度、壓力、光電感測器等。
2 RFID:RFID的全稱為Radio Frequency Identification,即射頻識別,又稱為電子標簽。RFID是一種非接觸式的自動識別技術,可以通過無線電訊號識別特定目標並讀寫相關數據。它主要用來為物聯網中的各物品建立唯一的身份標示。
3 感測器網路:感測器網路是一種由感測器節點組成網路,其中每個感測器節點都具有感測器、微處理器、以及通信單元。節點間通過通信網路組成感測器網路,共同協作來感知和採集環境或物體的准確信息。而無線感測器網路(Wireless Sensor Network,簡稱WSN),則是目前發展迅速,應用最廣的感測器網路。
對於目前關注和應用較多的RFID網路來說,附著在設備上的RFID標簽和用來識別RFID信息的掃描儀、感應器都屬於物聯網的感知層。在這一類物聯網中被檢測的信息就是RFID標簽的內容,現在的電子(不停車),收費系統(Electronic Toll Collection,ETC)、超市倉儲管理系統、飛機場的行李自動分類系統等都屬於這一類結構的物聯網應用。

⑧ WSN安全特點主要有哪些

WSN安全特點如下:

(1)動態性網路。WSN具有很強的網路動態性。由於能量、環境等問題,會使感測器節點死亡,或者由節點的移動性,又會有新的節點加入到網路中,從而使整個網路的拓撲結構發生動態變化。這就要求WSN要能夠適應這種變化,使網路具有可調性和重構性。

(2)硬體資源有限。節點由於受到價格、體積和功耗的限制,在通信能力、計算能力和內存空間等方面比普通計算機要弱很多。

(3)能量受限。網路節點由電池供電,電池的容量一般不是很大。由於應用領域的特殊性,不能經常給電池充電或更換電池,一旦電池能量用完,這個節點也就失去了作用(死亡)。因此在WSN的設計技術和協議的使用都要以節能為前提。

(4)大規模網路。為了對一個區域執行高密度的監測、感知任務,WSN往往將成千上萬,甚至更多的感測節點投放到這個區域,規模較移動通信網路成數量級地提高,甚至無法為單個節點分配統一的地址。

(5)以數據為中心。在WSN中,人們主要關心某個區域的某些觀測指標,而不是關心具體某個節點的觀測數據,這就是WSN以數據為中心的特點。相比之下,互聯網傳送的數據是和節點的物理地址聯系起來的。

(6)廣播式通信。由於WSN中節點數目龐大,使得其在組網和通信時不可能如Ad hoc網路那樣採用點對點通信,而要採用廣播方式,以加快信息傳播的范圍和速度,並可以節省電力。

(7)無人值守。感測器的應用與物理世界緊密聯系,感測器節點往往密集發布於急需監控的物理環境中。

(8)易受物理環境影響。WSN與其所在物理環境密切相關,並隨著環境的變化而不斷變化。

補充與物理環境相關的例子:

閱讀全文

與wsn需要解決的關鍵技術有哪些相關的資料

熱點內容
數據線車載藍牙鄭州哪裡有賣的 瀏覽:214
演算法中代理模型是什麼 瀏覽:717
excel數據怎麼導入外部 瀏覽:436
如何入住微信小程序 瀏覽:976
哪個微信小程序可以看戶型圖 瀏覽:587
奶粉dha含量看哪個數據 瀏覽:335
練吃雞技術在哪裡練 瀏覽:325
存在的科學技術問題是什麼意思 瀏覽:414
怎麼測量產品孔的角度 瀏覽:643
昆明的菜市場為什麼都關了 瀏覽:198
白天菜市場有什麼好吃的 瀏覽:38
什麼是攝影信息特性 瀏覽:428
遠洋市場帝王蟹多少錢 瀏覽:468
督促程序的范圍是什麼 瀏覽:699
康寶萊代理人一般多少錢 瀏覽:448
殖民地模擬器怎麼和商人交易 瀏覽:692
外匯交易平台哪裡學 瀏覽:850
如何把技術掌握在自己手裡 瀏覽:618
易代理怎麼開通供應商 瀏覽:473
杭州二手裝載機交易市場在哪裡 瀏覽:971