導航:首頁 > 信息技術 > 生物化學新技術都有哪些

生物化學新技術都有哪些

發布時間:2022-10-03 10:49:05

Ⅰ 生物學和化學分別有哪些尖端科技是需要大量計算機技術的支持的

「系統生物學」是現在「生物學」最熱門的研究領域之一。(此網業連接不到,不好意思)可看看下列回答
從生物學的研究方向來看,無論是宏觀,還是微觀,僅僅掌握單一的生物學知識是無法勝任的。從生物學發展趨勢來看,今日的尖端科技,明日就可能成為生物科技發展的基礎。這就需要我們的學生不斷掌握新知識,了解新成就。只有這樣,才有可能站在前人...相關資料請看http://www.hqzx.e.sh.cn/mainweb/sw/kctz/smfz.htm
其次是基因工程范疇的系列問題要用到關於計算機類的問題(如:基因識別器, 生物特徵 身份鑒別 模式識別)。要用到生物計算機。
生物計算機

生物計算機是以生物界處理問題的方式為模型的計算機。目前主要有:生物分子或超分子晶元、自動機模型、仿生演算法、生物化學反應演算法等幾種類型。
計算機工業在近幾十年內飛速發展,其速度令人瞠目。然而目前晶體管的密度已近當前所用技術的理論極限,晶體管計算機能否繼續發展下去?所以,人們在不斷尋找新的計算機結構。另一方面,人們在研究人工智慧的同時,借鑒生物界的各種處理問題的方式,即所謂生物演算法,提出了一些生物計算機的模型,部分模型已經解決了一些經典計算機難以解決的問題。

生物計算機目前主要有以下幾類:

1. 生物分子或超分子晶元:立足於傳統計算機模式,從尋找高效、體微的電子信息載體及信息傳遞體入手,目前已對生物體內的小分子、大分子、超分子生物晶元的結構與功能做了大量的研究與開發。「生物化學電路」 即屬於此。

2. 自動機模型:以自動理論為基礎,致力與尋找新的計算機模式,特別是特殊用途的非數值計算機模式。目前研究的熱點集中在基本生物現象的類比,如神經網路、免疫網路、細胞自動機等。不同自動機的區別主要是網路內部連接的差異,其基本特徵是集體計算,又稱集體主義,在非數值計算、模擬、識別方面有極大的潛力。

3. 仿生演算法:以生物智能為基礎,用仿生的觀念致力於尋找新的演算法模式,雖然類似於自動機思想,但立足點在演算法上,不追求硬體上的變化。 4. 生物化學反應演算法:立足於可控的生物化學反應或反應系統,利用小容積內同類分子高拷貝數的優勢,追求運算的高度並行化,從而提供運算的效率。DNA計算機 屬於此類。以下將著重介紹自動機模型中的計算神經網路和生物化學反應演算法中的DNA計算機的模型。

計算神經網路

早在1943年心理學家W. McCulloch和數學家W. Pitts合作提出神經元的二值邏輯模型。1949年D. Hebb提出了改變神經元連接強度的學習規則,這一規則至今在各種網路模型中起著重要作用。1962年F. Rosenblatt提出感知機模型。1982年美國物理學家J.Hopfield提出一種全新的神經網路模型 ,它體現了D. Marr的計算神經理論、耗散結構和混沌理論的基本精神,用S型曲線替代二值邏輯,引入「能量」函數,使網路的穩定性有了嚴格的判斷依據,模型具有理想記憶、分類與誤差自動校正等智能。Hopfield模型的動力學特徵的分析提供了有力的研究方法。

神經網路系統模擬大腦的工作方式,由大量簡單的神經元廣泛相互連接而成,形成一種拓撲結構。大腦具有相當高級的處理信息的能力,與傳統計算機模型相比,大腦具有如下特徵:首先是大規模並行處理能力,其次是大腦具有很強的「容錯性」和聯想功能,第三是大腦具有很強的自適應能性和自組織性。在這些方面,目前的傳統計算機模型是難於實現的。

具體的神經元模型主要是如何更好地反應神經元在刺激下發放電位的本質。大多數模型把神經元之間的連接考慮成線性連接,輸入層與輸出層直接相連,沒有中間所謂隱單元層。每個神經元只能是興奮態或抑制態,任一神經元的輸入是其他神經元的輸出通過突觸作用的總和。如果考慮興奮態和抑制態之間的過渡情況,可以採用S型曲線來表徵神經元的非線性輸入和輸出特性,如J. Hopfield模型;也可以按照統計物理學的概念和方法,神經元的輸入由神經元狀態更新的概率來決定,如波爾茲曼機模型;還可以在神經元的輸入與輸出層之增加中間變換層,如感知機模型;增加反向誤差校正通道的反傳播模型等等。通過對神經元的形態與功能的不同表達,可以產生不同的模型。

DNA計算機

1994年,美國加州大學的L. Adleman博士在《Science》上公布了DNA計算機的理論,並成功地在DNA溶液的試管中進行了運算實驗。L. Adleman博士的DNA計算機完全是一種新的觀念。其基本設想是:以DNA鹼基序列作為信息編碼的載體,利用現代分子生物學技術,在試管內控制酶作用下的DNA序列反應,作為實現運算的過程;即以反應前的DNA序列作為輸入的數據,反應後的DNA序列作為運算的結果。DNA計算機是一種化學反應計算機。到目前為止,已有人通過DNA計算機模型進行實驗解決了一些基本的NP問題。如L. Adleman博士做的對貨郎擔問題(哈密頓圖問題,HPP)的計算,和普林斯頓大學查科普頓作的可滿足性問題(SAT問題) 。所謂NP問題 ,是指人們根據問題類的演算法復雜程度的劃分而言,與P問題相對。P問題是指演算法復雜性隨著問題規模的增長而呈多項式增長的演算法,是可以計算的。NP問題是指指演算法復雜性隨著問題規模的增長而呈指數增長的演算法,是實際上不可計算的。DNA計算機的構想是一種創新,具有巨大的潛力。DNA計算機運算速度快,其幾天的運算量就相當於計算機問世以來世界上所有計算機的運算總量。它的存儲容量非常巨大,而耗能卻只有一台普通計算機的十億分子一。當然,DNA計算機畢竟只是一種理論設想,在很多方面還相當不完善。主要表現在:

1. 構造的現實性及計算潛力。DNA計算機以編碼後的DNA序列作為輸入,在試管內反應完成計算,反應產物及溶液給出了全部解空間,但是最優解如何與其他解分離,怎樣輸出,是一個技術性極強的問題。目前還沒有令人滿意的輸出手段。隨著求解問題規模的擴大,輸出將成為DNA計算機的瓶頸。

2. 運算過程中的錯誤問題。在擴增DNA的過程中,有較高的錯配率,而且大量的DNA在幾百步的反應中也會產生一些支路反應。錯誤會產生偽解,並增加最優解輸出的難度。

3. 人機界面。怎樣使得DNA計算機的輸入和輸出變成一般人可以接受的,否則就無法進行廣泛的應用。

不論如何,DNA計算機的提出拓寬了人們的視野,啟發人們用演算法的觀念研究生命,並向眾多領域提出了挑戰。(http://..com/question/7358400.html為原文出處) 相關「生物 計算機問題可以到http://www..com/s?ie=gb2312&bs=%CE%B4%BD%E2%BE%F6%B5%C4%C9%FA%CE%EF%CE%CA%CC%E2&sr=&z=&cl=3&f=8&wd=%C9%FA%CE%EF+%BC%C6%CB%E3%BB%FA&ct=0觀看(希望你能找到自己想要的)
再說說化學與計算,應該是把對未直元素和試驗等數據用C++編程,編輯的軟體利用是十分有必要的。在程序中模擬試驗,既不要試驗空間,也不會用到很多器具,節省了很多不必要的資源。而且還可以與世界各地專家在網上交流和共同試驗等等,這都是化學,生物計算軟體可開發利用成分...
化學 計算機

想像一下,未來的計算機會成為什麼樣子?假如有人說,讓像果凍一樣的物質去思考,去表達同情心,你覺得可能嗎?對於早已習慣和熟悉了稜角分明的顯示屏、主機和滑鼠的現代一族而言,把計算機想像成為一團軟軟的、滑滑的、沒有固定形狀的果凍,確實有點異想天開。然而,英國布里斯多大學計算機專家安德魯正在做著這樣的夢,他的夢想是,用離子替代電子,用果凍一樣的物質替代硅晶元和電路板。大多數人累了的時候,一般是喝杯咖啡,或者是到戶外去散步,呼吸一下新鮮空氣。安德魯卻與眾不同,當他覺得腦子有些不大靈光,需要點額外刺激時,就讓他的機器人用金屬手指劃拉一下一個盛滿化學液體的盤子。這一盤子的化學液體,就是安德魯所設計的液體計算機的」大腦」原型。離子波的形成和擴散,就是化學計算機的「思考」過程。當運行速度變慢時,「大腦」就會對機械手發出指令,將金屬手指浸到盤子中去,搖晃一下那些神奇的化學液體。
安德魯現在所設計的化學計算機,還只是簡單地模仿人類的手臂和大腦之間的反饋過程,他的志向是,要設計化學處理器,把計算機硬體裝到瓶子里去。經過10多年的研究,安德魯現在已開發出液體邏輯門,並認為他所設計的陣列具有無限的自我重組和修復能力。計算機巨人IBM也認為,利用這種陣列技術,有可能設計出功能強大的新型計算機晶元。此外,安德魯還有另外一個雄心勃勃的目標,即進一步加強「鼓波」的能力,使之無愧於液體腦的稱號。為了證明液體腦的概念潛力無限,前途光明。安德魯特別設計了液體腦的載體———果凍機器人。它有人造的眼睛,合成的荷爾蒙。也許有一天,果凍機器人可以感受到周圍的環境,甚至有可能感受到人類的情感。化學計算機有個十分復雜而又特別迷人之處,稱之為貝洛索夫-恰鮑廷斯基反應(BZ反應),它是由3個不同的反應組成的化學振盪反應。每個反應都有不同的分子和離子,當加入特定的化學成分後,首先觸發第一個反應,所產生的生成物可以觸發第二個反應,隨後第二個反應的生成物又可以觸發第三個反應,第三反應的生成物再觸發第一個反應,由此循環往復。更為迷人的是,各個不同的反應會產生不同的顏色,因此可以形成紅藍交替的波。BZ反應之所以重要,在於利用它可以解決一些數學難題,尤其是一些現在的計算機難以解決的問題。比如,迷宮最短路徑問題。用傳統的計算機解這一問題必須要窮盡所有的路徑,然後再進行比較,這需要耗費大量的時間。而利用BZ反應則不同。由於波在傳播和擴散時,總是走最短的路徑。只要利用照相機,記錄下波的運動軌跡,就可以解決這一難題。

上個世紀90年代中安德魯意識到,BZ反應有更重要的應用,那就是可以用於化學處理器。為此,他組織起一個專門的班子,並開發了兩個化學處理器的概念模型。一個模型可以模仿人類的手臂與大腦的反饋活動。另一個由兩個BZ反應組成,可以在一個布滿傢具的房間內自動移動到目的地。雖然這兩個概念模型表現還不錯,安德魯卻意識到,如果要讓化學處理器處理更為復雜的運算過程,必須要有邏輯門。美國波士頓大學的一項理論研究引起了安德魯的注意。該研究認為,可以模仿斯諾克撞球,製造一種形式簡單的處理器。也就是說,每個球可以代表1或0,球的碰撞過程就是計算過程,球如何相撞,相撞後彈出的方向,可以精確地表現為邏輯過程。換句話說,碰撞結果可以成為邏輯門的等價物。這樣,安德魯的任務就變成如何讓BZ波進行碰撞。去年,安德魯的研究取得重大突破。他把BZ混合物放到鹵化銀薄膠層上,由於鹵化物可以起到化學阻滯劑的作用,膠層可以延緩波的傳播速度。這樣,BZ反應就不會形成完整的圓形波,只是形成了小段的圓弧,並且沿直線進行傳播,安德魯將之稱為BZ彈。BZ彈更多地表現出准粒子的特性,而不是波的特性,其表現與撞球相似。實驗中,安德魯發現,兩個BZ彈在特定的角度相撞時,只在特定的方向產生唯一的輸出。如果僅有一個輸入,則在該方向沒有輸出。這樣安德魯就研究出了邏輯與。此後,他又相繼研究出邏輯或、邏輯非以及邏輯互斥,這就為安德魯的化學處理器奠定了堅實的基礎。安德魯的化學處理器雖然還處於初級階段,但他已把目光轉向了並行化學處理器。對於化學處理器能否成功,人們還處於未知階段,但科學家相信,如果人類能夠具備控制納米級水平製造波的能力,化學處理器就很可能實現。正如一些專家所言,不管安德魯的志向能否實現,他的研究工作無論對揭示人類大腦的奧秘,還是製造更好的處理器,均具有十分重要的意義。畢竟,化學處理器是生物組織器官和電子設備之間的一座橋梁(http://..com/question/16587357.html原文出處)相關的可到
(http://www..com/s?ie=gb2312&bs=%C9%FA%CE%EF+%BC%C6%CB%E3%BB%FA&sr=&z=&cl=3&f=8&wd=%BB%AF%D1%A7+%BC%C6%CB%E3%BB%FA&ct=0)去看。
我可說的就這么多了希望對你有所幫助

Ⅱ 生物化學的重大發現有哪些

你好,我是在讀大三學生,是在大二修的生物化學,由於這是很厚的一本書,這是我在書找的一些資料,希望對你有用(由於很繁雜,所以只簡略寫了):1907年,E.Fisher提出蛋白質由氨基酸組成,並組成多肽。1897,E.Suchner發現酶具有催化活性,1902,E.Fischer合成糖和嘌呤衍生物,1907,E.Buchner發現無細胞酵母液發酵現象,1923,加拿大F.G.Banting發現胰島素,1929,F.G.Hopkins發現促進生長的維生素,1931,O.H.Warburg發現呼吸酶及作用方式。1939,A.Butenandt發現了性激素,1948,A.W.K.Tiselius發明了電泳技術並發現血清蛋白的組分。1952,S.A.Waksman發現鏈黴素,1954,Linus Pauling美國,發現a螺旋,1962,J.D.Waton ,Crick,提出DNA雙螺旋結構,等等……還有很多,打外國人的名字好麻煩吖,如果還不夠的話請講哦~~還很多,大部分都獲得諾貝爾獎的

Ⅲ 現在生物化學的研究方向有哪些

生物化學主要研究生物體分子結構與功能、物質代謝與調節以及遺傳信息傳遞的分子基礎與調控規律。

生物化學組成

除了水和無機鹽之外,活細胞的有機物主要由碳原子與氫、氧、氮、磷、硫等結合組成,分為大分子和小分子兩大類。前者包括蛋白質、核酸、多糖和以結合狀態存在的脂質;後者有維生素、激素、各種代謝中間物以及合成生物大分子所需的氨基酸、核苷酸、糖、脂肪酸和甘油等。在不同的生物中,還有各種次生代謝物,如萜類、生物鹼、毒素、抗生素等。

雖然對生物體組成的鑒定是生物化學發展初期的特點,但直到今天,新物質仍不斷在發現。如陸續發現的干擾素、環核苷一磷酸、鈣調蛋白、粘連蛋白、外源凝集素等,已成為重要的研究課題。有的簡單的分子,如作為代謝調節物的果糖-2,6-二磷酸是1980年才發現的。另一方面,早已熟知的化合物也會發現新的功能,20世紀初發現的肉鹼,50年代才知道是一種生長因子,而到60年代又了解到是生物氧化的一種載體。多年來被認為是分解產物的腐胺和屍胺,與精胺、亞精胺等多胺被發現有多種生理功能,如參與核酸和蛋白質合成的調節,對DNA超螺旋起穩定作用以及調節細胞分化等。

代謝調節控制

新陳代謝由合成代謝和分解代謝組成。前者是生物體從環境中取得物質,轉化為體內新的物質的過程,也叫同化作用;後者是生物體內的原有物質轉化為環境中的物質,也叫異化作用。同化和異化的過程都由一系列中間步驟組成。中間代謝就是研究其中的化學途徑的。如糖元、脂肪和蛋白質的異化是各自通過不同的途徑分解成葡萄糖、脂肪酸和氨基酸,然後再氧化生成乙醯輔酶A,進入三羧酸循環,最後生成二氧化碳。

在物質代謝的過程中還伴隨有能量的變化。生物體內機械能、化學能、熱能以及光、電等能量的相互轉化和變化稱為能量代謝,此過程中ATP起著中心的作用。

新陳代謝是在生物體的調節控制之下有條不紊地進行的。這種調控有3種途徑:①通過代謝物的誘導或阻遏作用控制酶的合成。這是在轉錄水平的調控,如乳糖誘導乳糖操縱子合成有關的酶;②通過激素與靶細胞的作用,引發一系列生化過程,如環腺苷酸激活的蛋白激酶通過磷醯化反應對糖代謝的調控;③效應物通過別構效應直接影響酶的活性,如終點產物對代謝途徑第一個酶的反饋抑制。生物體內絕大多數調節過程是通過別構效應實現的。

結構與功能

生物大分子的多種多樣功能與它們特定的結構有密切關系。蛋白質的主要功能有催化、運輸和貯存、機械支持、運動、免疫防護、接受和傳遞信息、調節代謝和基因表達等。由於結構分析技術的進展,使人們能在分子水平上深入研究它們的各種功能。酶的催化原理的研究是這方面突出的例子。蛋白質分子的結構分4個層次,其中二級和三級結構間還可有超二級結構,三、四級結構之間可有結構域。結構域是個較緊密的具有特殊功能的區域,連結各結構域之間的肽鏈有一定的活動餘地,允許各結構域之間有某種程度的相對運動。蛋白質的側鏈更是無時無刻不在快速運動之中。蛋白質分子內部的運動性是它們執行各種功能的重要基礎。

80年代初出現的蛋白質工程,通過改變蛋白質的結構基因,獲得在指定部位經過改造的蛋白質分子。這一技術不僅為研究蛋白質的結構與功能的關系提供了新的途徑;而且也開辟了按一定要求合成具有特定功能的、新的蛋白質的廣闊前景。

核酸的結構與功能的研究為闡明基因的本質,了解生物體遺傳信息的流動作出了貢獻。鹼基配對是核酸分子相互作用的主要形式,這是核酸作為信息分子的結構基礎。脫氧核糖核酸的雙螺旋結構有不同的構象,J.D.沃森和F.H.C.克里克發現的是B-結構的右手螺旋,後來又發現了稱為 Z-結構的左手螺旋。DNA還有超螺旋結構。這些不同的構象均有其功能上的意義。核糖核酸包括信使核糖核酸(mRNA)、轉移核糖核酸(tRNA)和核蛋白體核糖核酸(rRNA),它們在蛋白質生物合成中起著重要作用。新近發現個別的RNA有酶的功能。

基因表達的調節控制是分子遺傳學研究的一個中心問題,也是核酸的結構與功能研究的一個重要內容。對於原核生物的基因調控已有不少的了解;真核生物基因的調控正從多方面探討。如異染色質化與染色質活化;DNA的構象變化與化學修飾;DNA上調節序列如加強子和調制子的作用;RNA加工以及轉譯過程中的調控等。

ATP在光合、代謝和遺傳之間架起了橋梁

方法學

在生物化學的發展中,許多重大的進展均得力於方法上的突破。例如同位素示蹤技術用於代謝研究和結構分析;層析,特別是70年代以來全面地大幅度地提高體系性能的高效液相層析以及各種電泳技術用於蛋白質和核酸的分離純化和一級結構測定;X射線衍射技術用於蛋白質和核酸晶體結構的測定;高解析度二維核磁共振技術用於溶液中生物大分子的構象分析;酶促等方法用於DNA序列測定;單克隆抗體和雜交瘤技術用於蛋白質的分離純化以及蛋白質分子中抗原決定因子的研究等。70年代以來計算機技術廣泛而迅速地向生物化學各個領域滲透,不僅使許多分析儀器的自動化程度和效率大大提高,而且為生物大分子的結構分析,結構預測以及結構功能關系研究提供了全新的手段。生物化學今後的繼續發展無疑還要得益於技術和方法的革新。

Ⅳ 常用生物化學領域的四大技術分別有哪些應用

基因工程(質粒載體的構建、克隆等),核酸(southern/northern)、蛋白質(western)、PCR 。大致就是這些吧。。。

Ⅳ 簡述生物化學四大基本實驗技術及其概念

離心,電泳,層析,比色

Ⅵ 生物化學實驗有哪些技術

生物化學實驗的基本技術,包括沉澱技術、色譜技術、電泳技術、離心技術、固定化技術、免疫化學技術、分光光度法等

Ⅶ 生物化學技術的分類

重要的現代生物化學實驗技術,按其目的和性質大致可分為三大類。
一是按不同的物理化學性質進行分析鑒定和分離制備,其中又可分為五類:①根據分子的大小進行分辨者,有凝膠過濾法、超速離心法、超濾法、 SDS電泳分析等。②根據分子荷電情況進行分辨者,有等電聚焦電泳法、離子交換層析法等。③根據吸收光譜和放射性等性質進行分辨者,有紫外/紅外/熒光分光光度法、X射線結構分析法、電子順磁共振,電子自旋共振和核磁共振法,以及放射性核素示蹤和放射免疫分析法等。④根據疏水相互作用或氫鍵形成的引力進行分辨者,有反相高效液相層析、分子雜交技術等。⑤根據特異相互作用進行分辨者,有親和層析、免疫化學分析法等。
二是經一系列不同的化學和物理方法處理,以求得差異分辨,或按指令合成不同的高分子物質。如氨基酸序列分析和序列合成、核苷酸序列分析和序列合成等。
三是有目的地對 DNA進行剪切拼接,引入細胞中的(或分子克隆技術)和等。
為使這些生物化學技術實現高效自動化、靈敏精確重復性好、特異性高,人們設計了一系列有微機控制的高性能儀器,使生物化學實驗技術更臻完美。必須強調指出的是,技術方法是十分重要的實驗手段,但更重要的是科學家運籌帷幄的戰略設計。只有巧妙地利用不同的生物化學實驗技術,方能達到預期的研究目的。

Ⅷ 生物化學與分子生物學最常用的實驗技術包括什麼

分子生物學實驗技術,是進行分子生物學理論和應用研究的技術,主要有核酸分離純化或合成、核苷酸順序測定、分子雜交和DNA人工重組技術。核心是DNA人工重組技術—核酸分離純化或合成、核苷酸順序測定和分子雜交技術都服務於DNA重組技術。

Ⅸ 目前生物科技有哪些先進技術

目前生物科技有什麼最新發展成果


1.我國科學家發現阿爾茨海默症致病的新機制
2006年11月19日,國際著名學術期刊《自然·醫學》網路版在線發表了中國科學院上海生命科學研究院生物化學與細胞生物學研究所研究組關於β澱粉樣蛋白產生過程新機制的最新研究成果。這項成果揭示了阿爾茨海默症致病的新機制,並且提示β2-腎上腺素受體有可能成為研發阿爾茨海默症的治療葯物的新靶點。

2.我國抗糖尿病新葯研究取得開創性進展
中科院上海葯物所科學家2006年在非肽類小分子胰高血糖素樣肽-1受體激動劑的研究領域取得了重要進展,相關成果於2007年元月第一周發表在國際權威科學期刊《美國科學院院刊(PNAS)》網路版上。美國科學院院刊編輯部在向媒體的書面新聞發布中指出,這類口服有效的非肽類小分子激動劑有可能成為糖尿病、肥胖症和其他相關代謝性疾病的一種新型療法。

3.揭示果蠅記憶奧秘,探索記憶的神經生物學基礎
中科院生物物理研究所研究組關於果蠅的最新研究成果,揭示了果蠅的腦中並不存在一個通用的記憶中心,而是不同感覺記憶儲藏在不同的區域里,並且像人類能記住圖像的高度、大小、顏色等不同參數一樣,果蠅的圖像記憶也有對應的不同參數。通過對果蠅記憶基因的研究,可進一步運用到小白鼠、哺乳動物甚至人類身上,從而解決人類失眠、老年痴獃等精神性疾病。

4.飲用水質安全風險的末端控制技術與應用
為及時評價水質狀況及應對突發事件,中科院生態環境研究中心和中科院廣州地球化學研究所合作開發出適合末端水質監控的生物在線監測與預警技術,建立並完善生物毒性測試方法,在分子、細胞水平上形成一套適用於水質評估的技術體系。研究中開發的關鍵技術擁有自主知識產權,共產生發明專利22項,發表論文61 篇,其中SCI收錄論文23篇。

5.美國科學家制出「仿生眼」助盲人恢復視力
美國科學家說,將可在兩年內提供「仿生眼睛」植入手術,幫助數百萬盲人恢復視力。
美國的研究人員已獲准於兩年內在五個治療中心為50到70名病人安裝這種「仿生眼睛」。
以希臘神話中百眼巨人阿古斯(Agrus)命名的「阿古斯二型」系統利用一個安裝在眼鏡上的照相機,把視覺信號傳送到眼睛裡的電極。
以前接受不夠先進的人工視網膜移植手術的病人能夠「看到」 光線、影像和物體的運動。但圖像不夠清晰。
一名失明者在1999年接受了這種手術,現在他上街時能夠避開長的或較低的樹枝,但看人時好像是看到一團黑影。
不過美國加州大學的科學家說,他們研造的「仿生眼睛」嘗試從相機取得實時的圖像,然後把它們變成微弱的電信號,輸送到一個接收器後,在通過電極,刺激視網膜的視覺神經向大腦發出信號,讓失明者能夠「看到」景物。
這種新的裝置比傳統的人工視網膜更細小,但擁有多達60個電極,使解像度更高。而且面積只有一平方毫米,植入手術也更容易。

閱讀全文

與生物化學新技術都有哪些相關的資料

熱點內容
為什麼安裝程序已在運行中 瀏覽:163
大數據二維碼是什麼 瀏覽:565
手機拍照有哪些技術 瀏覽:880
山西清香型酒有哪些代理品牌 瀏覽:171
希捷是做什麼產品的 瀏覽:496
上海做老房子交易的中介有哪些 瀏覽:673
數據線車載藍牙鄭州哪裡有賣的 瀏覽:214
演算法中代理模型是什麼 瀏覽:717
excel數據怎麼導入外部 瀏覽:436
如何入住微信小程序 瀏覽:976
哪個微信小程序可以看戶型圖 瀏覽:587
奶粉dha含量看哪個數據 瀏覽:335
練吃雞技術在哪裡練 瀏覽:325
存在的科學技術問題是什麼意思 瀏覽:414
怎麼測量產品孔的角度 瀏覽:643
昆明的菜市場為什麼都關了 瀏覽:198
白天菜市場有什麼好吃的 瀏覽:38
什麼是攝影信息特性 瀏覽:428
遠洋市場帝王蟹多少錢 瀏覽:468
督促程序的范圍是什麼 瀏覽:699