導航:首頁 > 信息系統 > 爬蟲軟體怎麼收集信息

爬蟲軟體怎麼收集信息

發布時間:2023-10-25 20:20:14

① 如何用python 爬蟲抓取金融數據

獲取數據是數據分析中必不可少的一部分,而網路爬蟲是是獲取數據的一個重要渠道之一。鑒於此,我拾起了Python這把利器,開啟了網路爬蟲之路。

本篇使用的版本為python3.5,意在抓取證券之星上當天所有A股數據。程序主要分為三個部分:網頁源碼的獲取、所需內容的提取、所得結果的整理。

一、網頁源碼的獲取

很多人喜歡用python爬蟲的原因之一就是它容易上手。只需以下幾行代碼既可抓取大部分網頁的源碼。

為了減少干擾,我先用正則表達式從整個頁面源碼中匹配出以上的主體部分,然後從主體部分中匹配出每隻股票的信息。代碼如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之間的所有代碼pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之間的所有信息

其中compile方法為編譯匹配模式,findall方法用此匹配模式去匹配出所需信息,並以列表的方式返回。正則表達式的語法還挺多的,下面我只羅列所用到符號的含義。

語法 說明

. 匹配任意除換行符「 」外的字元

* 匹配前一個字元0次或無限次

? 匹配前一個字元0次或一次

s 空白字元:[<空格> fv]

S 非空白字元:[^s]

[...] 字元集,對應的位置可以是字元集中任意字元

(...) 被括起來的表達式將作為分組,裡面一般為我們所需提取的內容

正則表達式的語法挺多的,也許有大牛隻要一句正則表達式就可提取我想提取的內容。在提取股票主體部分代碼時發現有人用xpath表達式提取顯得更簡潔一些,看來頁面解析也有很長的一段路要走。

三、所得結果的整理

通過非貪婪模式(.*?)匹配>和<之間的所有數據,會匹配出一些空白字元出來,所以我們採用如下代碼把空白字元移除。

stock_last=stock_total[:] #stock_total:匹配出的股票數據for data in stock_total: #stock_last:整理後的股票數據
if data=='':
stock_last.remove('')

最後,我們可以列印幾列數據看下效果,代碼如下

print('代碼',' ','簡稱',' ',' ','最新價',' ','漲跌幅',' ','漲跌額',' ','5分鍾漲幅')for i in range(0,len(stock_last),13): #網頁總共有13列數據
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

② 如何利用Python爬蟲從網頁上批量獲取想要的信息

稍微說一下背景,當時我想研究蛋白質與小分子的復合物在空間三維結構上的一些規律,首先得有數據啊,數據從哪裡來?就是從一個涵蓋所有已經解析三維結構的蛋白質-小分子復合物的資料庫裡面下載。這時候,手動一個個去下顯然是不可取的,我們需要寫個腳本,能從特定的網站選擇性得批量下載需要的信息。python是不錯的選擇。

import urllib #python中用於獲取網站的模塊
import urllib2, cookielib

有些網站訪問時需要cookie的,python處理cookie代碼如下:
cj = cookielib.CookieJar ( )
opener = urllib2.build_opener( urllib2.HttpCookieProcessor(cj) )
urllib2.install_opener (opener)

通常我們需要在網站中搜索得到我們需要的信息,這里分為二種情況:

1. 第一種,直接改變網址就可以得到你想要搜索的頁面:

def GetWebPage( x ): #我們定義一個獲取頁面的函數,x 是用於呈遞你在頁面中搜索的內容的參數
url = 'http://xxxxx/xxx.cgi?&' + 『你想要搜索的參數』 # 結合自己頁面情況適當修改
page = urllib2.urlopen(url)
pageContent = page.read( )
return pageContent #返回的是HTML格式的頁面信息

2.第二種,你需要用到post方法,將你搜索的內容放在postdata裡面,然後返回你需要的頁面

def GetWebPage( x ): #我們定義一個獲取頁面的函數,x 是用於呈遞你在頁面中搜索的內容的參數
url = 'http://xxxxx/xxx' #這個網址是你進入搜索界面的網址
postData = urllib.urlencode( { 各種『post』參數輸入 } ) #這裡面的post參數輸入需要自己去查
req= urllib2.Request (url, postData)
pageContent = urllib2.urlopen (req). read( )
return pageContent #返回的是HTML格式的頁面信息

在獲取了我們需要的網頁信息之後,我們需要從獲得的網頁中進一步獲取我們需要的信息,這里我推薦使用 BeautifulSoup 這個模塊, python自帶的沒有,可以自行網路谷歌下載安裝。 BeautifulSoup 翻譯就是『美味的湯』,你需要做的是從一鍋湯裡面找到你喜歡吃的東西。

import re # 正則表達式,用於匹配字元
from bs4 import BeautifulSoup # 導入BeautifulSoup 模塊

soup = BeautifulSoup(pageContent) #pageContent就是上面我們搜索得到的頁面

soup就是 HTML 中所有的標簽(tag)BeautifulSoup處理格式化後的字元串,一個標準的tag形式為:

hwkobe24

通過一些過濾方法,我們可以從soup中獲取我們需要的信息:

(1) find_all ( name , attrs , recursive , text , **kwargs)
這裡面,我們通過添加對標簽的約束來獲取需要的標簽列表, 比如 soup.find_all ('p') 就是尋找名字為『p』的 標簽,而soup.find_all (class = "tittle") 就是找到所有class屬性為"tittle" 的標簽,以及soup.find_all ( class = re.compile('lass')) 表示 class屬性中包含『lass』的所有標簽,這里用到了正則表達式(可以自己學習一下,非常有用滴)

當我們獲取了所有想要標簽的列表之後,遍歷這個列表,再獲取標簽中你需要的內容,通常我們需要標簽中的文字部分,也就是網頁中顯示出來的文字,代碼如下:

tagList = soup.find_all (class="tittle") #如果標簽比較復雜,可以用多個過濾條件使過濾更加嚴格

for tag in tagList:
print tag.text
f.write ( str(tag.text) ) #將這些信息寫入本地文件中以後使用

(2)find( name , attrs , recursive , text , **kwargs )

它與 find_all( ) 方法唯一的區別是 find_all() 方法的返回結果是值包含一個元素的列表,而 find() 方法直接返回結果

(3)find_parents( ) find_parent( )

find_all() 和 find() 只搜索當前節點的所有子節點,孫子節點等. find_parents() 和 find_parent() 用來搜索當前節點的父輩節點,搜索方法與普通tag的搜索方法相同,搜索文檔搜索文檔包含的內容

(4)find_next_siblings() find_next_sibling()

這2個方法通過 .next_siblings 屬性對當 tag 的所有後面解析的兄弟 tag 節點進代, find_next_siblings() 方法返回所有符合條件的後面的兄弟節點,find_next_sibling() 只返回符合條件的後面的第一個tag節點

(5)find_previous_siblings() find_previous_sibling()

這2個方法通過 .previous_siblings 屬性對當前 tag 的前面解析的兄弟 tag 節點進行迭代, find_previous_siblings()方法返回所有符合條件的前面的兄弟節點, find_previous_sibling() 方法返回第一個符合條件的前面的兄弟節點

(6)find_all_next() find_next()

這2個方法通過 .next_elements 屬性對當前 tag 的之後的 tag 和字元串進行迭代, find_all_next() 方法返回所有符合條件的節點, find_next() 方法返回第一個符合條件的節點

(7)find_all_previous() 和 find_previous()

這2個方法通過 .previous_elements 屬性對當前節點前面的 tag 和字元串進行迭代, find_all_previous() 方法返回所有符合條件的節點, find_previous()方法返回第一個符合條件的節點

具體的使用方法還有很多,用到這里你應該可以解決大部分問題了,如果要更深入了解可以參考官方的使用說明哈!

③ 如何通過網路爬蟲獲取網站數據

這里以python為例,簡單介紹一下如何通過python網路爬蟲獲取網站數據,主要分為靜態網頁數據的爬埋山差取和動態網頁數據的爬取,實驗環境win10+python3.6+pycharm5.0,主要內容如下:

靜態網頁數據

這里的數據都嵌套在網頁源碼中,所以直接requests網頁源碼進行解析就行,下面我簡單介紹一下,這里以爬取糗事網路上的數據為例:

1.首先,打開原網頁,如下,這里假設要爬取的欄位包括昵稱、內容、好笑數和評論數:

接著查看網頁源碼,如下,可以看的出來,所有的數據都嵌套在網頁中:

2.然後針對以上網頁結構,我們就可以直接編寫爬蟲代碼,解析網頁並提取出我們需要的數據了,測試代碼如下,非常簡單,主要用到requests+BeautifulSoup組合,其中requests用於獲取網頁源碼,BeautifulSoup用於解析網頁提取數據:

點擊運行這個程序,效果如下,已經成功爬取了到我們需要的數據:

動態網頁數據

這里的數據都沒有在網頁源碼中(所以直接請求頁面是獲取不到任何數據的),大部分情況下都是存儲在一唯唯個json文件中,只有在網頁更新的時候,才會載入數據,下面我簡單介紹一下這種方式,這里以爬取人人貸上面的數據為例:

1.首先,打開原網頁,如下,這里假設要爬取的數據包括年利率,借款標題,期限,金額和進度:

接著按F12調出開發者工具,依次點擊「Network」->「XHR」,F5刷新頁面,就可以找打動態載入的json文件,如下,也就是我們需要爬彎皮取的數據:

2.然後就是根據這個json文件編寫對應代碼解析出我們需要的欄位信息,測試代碼如下,也非常簡單,主要用到requests+json組合,其中requests用於請求json文件,json用於解析json文件提取數據:

點擊運行這個程序,效果如下,已經成功爬取到我們需要的數據:

至此,我們就完成了利用python網路爬蟲來獲取網站數據。總的來說,整個過程非常簡單,python內置了許多網路爬蟲包和框架(scrapy等),可以快速獲取網站數據,非常適合初學者學習和掌握,只要你有一定的爬蟲基礎,熟悉一下上面的流程和代碼,很快就能掌握的,當然,你也可以使用現成的爬蟲軟體,像八爪魚、後羿等也都可以,網上也有相關教程和資料,非常豐富,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。

④ 爬蟲都可以干什麼

爬蟲可以做的是以下四種:

1、收集數據:Python爬蟲程序可用於收集數據,這是最直接和最常用的方法。由於爬蟲程序是一個程序,程序運行得非常快,不會因為重復的事情而感到疲倦,因此使用爬蟲程序獲取大量數據變得非常簡單、快速。
2、數據儲存:Python爬蟲可以將從各個網站收集的數據存入原始頁面資料庫。其中的頁面數據與用戶瀏覽器得到的HTML是完全一樣的。注意:搜索引擎蜘蛛在抓取頁面時,也做一定的重復內容檢測,一旦遇到訪問許可權很低的網站上有大量抄襲、採集或者復制的內容,很可能就不再爬行。
3、網頁預處理:Python爬蟲可以將爬蟲抓取回來的頁面,進行各種步驟的預處理。比如提取文字、中文分詞、消除噪音、索引處理、特殊文字處理等。
4、提供檢索服務、網站排名:Python爬蟲在對信息進行組織和處理之後,為用戶提供關鍵字檢索服務,將用戶檢索相關的信息展示給用戶。同時可以根據頁面的PageRank值來進行網站排名,這樣Rank值高的網站在搜索結果中會排名較前,當然也可以直接使用Money購買搜索引擎網站排名。感興趣的話點擊此處,免費學習一下

想了解更多有關爬蟲的相關信息,推薦咨詢達內教育。達內與阿里、Adobe、紅帽、ORACLE、微軟、美國計算機行業協會(CompTIA)、網路等國際知名廠商建立了項目合作關系。共同制定行業培訓標准,為達內學員提供高端技術、所學課程受國際廠商認可,讓達內學員更具國際化就業競爭力。

⑤ 如何用最簡單的Python爬蟲採集整個網站

在之前的文章中Python實現「維基網路六度分隔理論「之基礎爬蟲,我們實現了在一個網站上隨機地從一個鏈接到另一個鏈接,但是,如果我們需要系統地把整個網站按目錄分類,或者要搜索網站上的每一個頁面,我們該怎麼辦?我們需要採集整個網站,但是那是一種非常耗費內存資源的過程,尤其是處理大型網站時,比較合適的工具就是用一個資料庫來存儲採集的資源,之前也說過。下面來說一下怎麼做。

網站地圖sitemap
網站地圖,又稱站點地圖,它就是一個頁面,上面放置了網站上需要搜索引擎抓取的所有頁面的鏈接(註:不是所有頁面,一般來說是所有文章鏈接。大多數人在網站上找不到自己所需要的信息時,可能會將網站地圖作為一種補救措施。搜索引擎蜘蛛非常喜歡網站地圖。
對於SEO,網站地圖的好處:
1.為搜索引擎蜘蛛提供可以瀏覽整個網站的鏈接簡單的體現出網站的整體框架出來給搜索引擎看;
2.為搜索引擎蜘蛛提供一些鏈接,指向動態頁面或者採用其他方法比較難以到達的頁面;
3.作為一種潛在的著陸頁面,可以為搜索流量進行優化;
4.如果訪問者試圖訪問網站所在域內並不存在的URL,那麼這個訪問者就會被轉到「無法找到文件」的錯誤頁面,而網站地圖可以作為該頁面的「准」內容。
數據採集
採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。
很明顯,這是一個復雜度增長很快的過程。加入每個頁面有10個鏈接,網站上有5個頁面深度,如果採集整個網站,一共得採集的網頁數量是105,即100000個頁面。
因為網站的內鏈有很多都是重復的,所以為了避免重復採集,必須鏈接去重,在Python中,去重最常用的方法就是使用自帶的set集合方法。只有「新」鏈接才會被採集。看一下代碼實例:
from urllib.request import urlopenfrom bs4 import BeautifulSoupimport repages = set()def getLinks(pageurl):globalpageshtml= urlopen("" + pageurl)soup= BeautifulSoup(html)forlink in soup.findAll("a", href=re.compile("^(/wiki/)")):if'href' in link.attrs:iflink.attrs['href'] not in pages:#這是新頁面newPage= link.attrs['href']print(newPage)pages.add(newPage)getLinks(newPage)getLinks("")
原理說明:程序執行時,用函數處理一個空URL,其實就是維基網路的主頁,然後遍歷首頁上每個鏈接,並檢查是否已經在全局變數集合pages裡面,如果不在,就列印並添加到pages集合,然後遞歸處理這個鏈接。
遞歸警告:Python默認的遞歸限制是1000次,因為維基網路的鏈接浩如煙海,所以這個程序達到遞歸限制後就會停止。如果你不想讓它停止,你可以設置一個遞歸計數器或者其他方法。
採集整個網站數據
為了有效使用爬蟲,在用爬蟲的時候我們需要在頁面上做一些事情。我們來創建一個爬蟲來收集頁面標題、正文的第一個段落,以及編輯頁面的鏈接(如果有的話)這些信息。
第一步,我們需要先觀察網站上的頁面,然後制定採集模式,通過F12(一般情況下)審查元素,即可看到頁面組成。
觀察維基網路頁面,包括詞條和非詞條頁面,比如隱私策略之類的頁面,可以得出下面的規則:
所有的標題都是在h1→span標簽里,而且頁面上只有一個h1標簽。
所有的正文文字都在div#bodyContent標簽里,如果我們想獲取第一段文字,可以用div#mw-content-text→p,除了文件頁面,這個規則對所有頁面都適用。
編輯鏈接只出現在詞條頁面上,如果有編輯鏈接,都位於li#ca-edit標簽的li#ca-edit→span→a裡面。
調整一下之前的代碼,我們可以建立一個爬蟲和數據採集的組合程序,代碼如下:
import redef getLinks(pageUrl):global pageshtml = urlopen("" + pageUrl)soup = BeautifulSoup(html)try:print(soup.h1.get_text())print(soup.find(id="mw-content-text").findAll("p")[0])print(soup.find(id="ca-edit").find("span").find("a").attrs['href'])except AttributeError:print("頁面缺少屬性")for link in soup.findAll("a", href =re.compile("^(/wiki/)")):if 'href' in link.attrs:#這是新頁面newPage = link.attrs['href']print("------------------\n"+newPage)
這個for循環和原來的採集程序基本上是一樣的,因為不能確定每一頁上都有所有類型的數據,所以每個列印語句都是按照數據在頁面上出現的可能性從高到低排列的。
數據存儲到MySQL
前面已經獲取了數據,直接列印出來,查看比較麻煩,所以我們就直接存到MySQL裡面吧,這里只存鏈接沒有意義,所以我們就存儲頁面的標題和內容。前面我有兩篇文章已經介紹過如何存儲數據到MySQL,數據表是pages,這里直接給出代碼:
import reimport datetimeimport randomimport pymysqlconn = pymysql.connect(host = '127.0.0.1',port = 3306, user = 'root', passwd = '19930319', db = 'wiki', charset ='utf8mb4')cur = conn.cursor()cur.execute("USE wiki")#隨機數種子random.seed(datetime.datetime.now())#數據存儲def store(title, content):cur.execute("INSERT INTO pages(title, content)VALUES(\"%s\", \"%s\")", (title, content))cur.connection.commit()def getLinks(articleUrl):html = urlopen("" + articleUrl)title = soup.find("h1").get_text()content =soup.find("div",{"id":"mw-content-text"}).find("p").get_text()store(title, content)returnsoup.find("div",{"id":"bodyContent"}).findAll("a",href=re.compile("^(/wiki/)((?!:).)*$"))#設置第一頁links =getLinks("/wiki/Kevin_Bacon")try:while len(links)>0:newArticle = links[random.randint(0, len(links)-1)].attrs['href']print (newArticle)links = getLinks(newArticle)finally:cur.close()conn.close()
小結
今天主要講一下Python中遍歷採集一個網站的鏈接,方便下面的學習。
希望通過上面的操作能幫助大家。如果你有什麼好的意見,建議,或者有不同的看法,我都希望你留言和我們進行交流、討論。

⑥ 怎麼用VBA或網路爬蟲程序抓取網站數據

VBA網抓常用方法
1、xmlhttp/winhttp法:
用xmlhttp/winhttp模擬向伺服器發送請求,接收伺服器返回的數據。
優點:效率高,基本無兼容性問題。
缺點:需要藉助如fiddler的工具來模擬http請求。
2、IE/webbrowser法:
創建IE控制項或webbrowser控制項,結合htmlfile對象的方法和屬性,模擬瀏覽器操作,獲取瀏覽器頁面的數據。
優點:這個方法可以模擬大部分的瀏覽器操作。所見即所得,瀏覽器能看到的數據就能用代碼獲取。
缺點:各種彈窗相當煩人,兼容性也確實是個很傷腦筋的問題。上傳文件在IE里根本無法實現。
3、QueryTables法:
因為它是excel自帶,所以勉強也算是一種方法。其實此法和xmlhttp類似,也是GET或POST方式發送請求,然後得到伺服器的response返回到單元格內。
優點:excel自帶,可以通過錄制宏得到代碼,處理table很方便
。代碼簡短,適合快速獲取一些存在於源代碼的table里的數據。
缺點:無法模擬referer等發包頭

也可以利用採集工具進行採集網頁端的數據,無需寫代碼。

⑦ 如何用爬蟲抓取股市數據並生成分析報表

1. 關於數據採集
股票數據是一種標准化的結構數據,是可以通過API介面訪問的(不過一般要通過渠道,開放的API有一定的局限性)。也可以通過爬蟲軟體進行採集,但是爬蟲軟體採集數據不能保證實時性,根據數據量和採集周期,可能要延遲幾十秒到幾分鍾不等。我們總結了一套專業的爬蟲技術解決方案(Ruby + Sidekiq)。能夠很快實現這個採集,也可以後台可視化調度任務。

2. 關於展現
網路股票數據的展現,網頁端直接通過HTML5技術就已經足夠,如果對界面要求高一點,可以採用集成前端框架,如Bootstrap;如果針對移動端開發, 可以使用Ionic框架。

3. 關於觸發事件
如果是採用Ruby on Rails的開發框架的話,倒是很方便了,有如sidekiq, whenever這樣子的Gem直接實現任務管理和事件觸發。

閱讀全文

與爬蟲軟體怎麼收集信息相關的資料

熱點內容
怎麼從安卓移數據到iphonex 瀏覽:731
鋼結構技術員考什麼證 瀏覽:958
在倉庫掛著領導畫賣產品怎麼罰 瀏覽:856
屬性標簽編製程序如何添加表格 瀏覽:112
上傳後加電影的程序怎麼加 瀏覽:629
雪球滬港通如何交易 瀏覽:10
和平精英如何練出主播的技術 瀏覽:167
合肥護士招聘信息在哪個網站看 瀏覽:406
企業抖音注冊後如何上產品 瀏覽:62
excel圖標數據標簽怎麼弄 瀏覽:472
如何學好web前端技術 瀏覽:478
代理茶葉怎麼入駐 瀏覽:480
哪個程序可以有錢 瀏覽:595
馬路市場屬於什麼性質的物品 瀏覽:373
自行車怎麼代理商 瀏覽:621
為什麼不賣代購產品 瀏覽:64
王者怎麼讓自己的技術變得厲害 瀏覽:579
微信小程序如何添加呱呱贊插件 瀏覽:624
刷機如何保存所有數據 瀏覽:254
掃描識別信息有哪些 瀏覽:46