導航:首頁 > 信息系統 > 轉行生物信息怎麼學

轉行生物信息怎麼學

發布時間:2023-08-21 12:03:22

① 如何系統的學習生物信息學

生物信息學,是一門綜合學科。涉及到數學,生物學和計算機的內容。但在我看來,計算機的基礎需要,但要求不是很高,關鍵是要有很好的生物學知識,包括遺傳學的、生物化學的、發育生物學的、分子生物學的、植物生理學的知識等等,也就說需要達到這樣的一個要求:在進行數據分析時,能對各種分析結果進行生物學的評價,並給出最優的分析策略。同時也應該有純熟的數理基礎,包括統計學的、拓撲學的,這樣才能把待分析的問題轉換成可計算的模型,最後能給出實現的程序。
從個人來說,因為生物信息學是一個非常大的領域,所以,關鍵是要確定自己的研究方向。比如,以關聯分析為方向的生物信息學,那麼就要掌握好各種關聯分析的統計分析方法,有很強的數據管理能力,足夠好的序列分析能力(這是進行variation查找和分析的基礎)。
回到6年以前,如果決定在生物信息學上發展,那麼我也許會做下面這些事情:
首先,從最不重要的計算機這個方面來說:
(1)要掌握好bash等腳本語言,一般的linux問題都能很好的解決
(2)熟練使用apache,mysql等基礎軟體工具,用joomla等CMS配置搭建網站
(3)應該努力精通perl,bioperl,以基於此的各種分析工具,比如gbrowser,cmap等
(4)足夠好的c/c++語言能力,這是實現新演算法的最高效語言。
(5)應該努力精通R語言,這是進行統計分析的基礎工具
(6)如果有機會,學學erlang這樣一些函數式語言吧
其次,從數學基礎來說,我覺得應該:
(1)學好線性代數
(2)學好高等數學,或者數學分析
(3)學好統計學
(4)學好離散數學
(5)學好計算機演算法和數據結構
其次,從生物學來說:
(1)如果沒有進化論的基層,請把進化論學好
(2)學好發育生物學,植物生理學
(3)學好基因組學、遺傳學等
千萬不要認為這些沒有什麼用,當你在數據分析,怎麼判斷結果的合理性,或者對結果進行解釋時候,都離不開這些生物學問題。最後,你對這些問題的理解成度,決定了你的生物信息學水平:只是一個有生物學知識的、會進行計算機操作的技術員,還是一個能給出解決方案的有良好計算機基礎的能把握生物學問題的生物信息學家。
最後,從生物信息學的角度來說:
(1)對NCBI等各大資料庫非常熟悉
(2)對各種生物學信息學的分析方法和策略非常的清楚,至少應該知道有那些工具軟體,以及這些工具軟體的原理和基於的生物學基礎,包括:基因組學分析,表達譜分析,代謝組分析、調控網路分析、數據結果的整合展示等
最後,生物信息學是一個發展很快的學科,但因起涉及的內容比較多,因此,要想到底一定的要求,是需要付出巨大的努力的。此外,在進行生物信息學學習的過程中,對自己感興趣的方法工具,一定要把文獻上的數據拿來,自己獨立分析一遍,自己去體會分析的過程,從而對這些方法和工具有更深入的理解。

② 生物信息學專業學什麼

生物信息學專業學什麼?

快車教育,某名企人力資源總監曾先生表示,生物信息學(Bioinformatics)是一門交叉科學,它包含了生物信息的獲取、加工、存儲、分配、分析、解釋等在內的所有方面,它綜合運用數學、計算機科學和生物學的各種工具,來闡明和理解大量生物數據所包含的生物學意義。它隨1990年人類基因組計劃(HGP)的實施和信息技術的發展而誕生,現已迅速發展成為當今生命科學具吸引力和重大的前沿領域,為生物學、計算機科學、數學、信息科學等專業的高素質人才提供了更廣闊的發展天地。

那麼生物信息學專業好不好?下面讓快車教育我為各位看官總結一下生物信息學專業的主要課程、專業知識以及專業技能的情況吧!

一、生物信息學專業主要課程:

普通生物學、生物化學、分子生物學、遺傳學、生物信息學、計算生物學、基因組學、生物晶元原理與技術、蛋白質組學、模式識別與預測、資料庫系統原理、Linux基礎及應用、生物軟體及資料庫、Perl編差孫程基礎等。

二、生物信息學專業知識與技能:

1.掌握普通生物學、生物化學、分子生物學、遺傳學等基本知識和實驗技能;

2.掌握計算機科學與技術基本知識和編程技能(包括計算機應用基礎、Linux基礎及應用、資料庫系統原理、模式識別與預測、生物軟體及資料庫、Perl編程基礎等),具備較強的數學和統計學素養(高等數學I、II、生物統計學等);

3.掌握生物信息學、基因組學、計算生物學、蛋白質組學、生物晶元原理與技術的基本理論和方法,初步具備綜合運用分子生物學、計算機科學與技術、數學、統計學等知識和技能,解決生物信息學基本問題的能力;

4.李慶襲掌握生哪兄物信息學資料的查詢、文獻檢索及運用現代信息技術獲得相關信息的基本方法,具有一定的實驗設計、結果分析、撰寫論文、參與學術交流的能力;

5.熟悉國家生物信息產業政策、知識產權及生物安全條例等有關政策和法規;

6.了解生物信息學的理論前沿、應用前景和新發展動態;

7.具有較好的科學人文素養和較強的英語應用能力,具備較強的自學能力、創新能力和獨立解決問題的能力;

8.具有良好的思想道德素質和文化素養,身心健康;

9.具有較好的科學素質、競爭意識、創新意識和合作精神。

以上是關於大學本科專業生物信息學專業學什麼的分析情況,更多高考專業生物信息學專業分析資訊敬請關注快車教育職業規劃頻道。

③ 生物信息學需要哪些具體科目,能否給出本科的學習准備建議

目前的生物信息學我認為有兩個大的方向,一個是與實驗緊密結合的生物信息學,依靠實驗數據出成果,第二個是與數學緊密結合的生物信息學,依靠演算法和編程出成果。

我是第一種,以微生物為主,所以我只能就我自己來看。讀到現在我覺得,對我用處最大的幾門是生物化學、分子生物學、細胞生物學、微生物學以及專講生物信息學的一些專業書籍。

本科期間除了打好語言基礎(的確很重要,否則將來走起來很困難,這里邊的語言包括英語以及一門編程語言,任意的都可以,主要是建立編程思想)之外,最好對本領域的前沿研究成果有一定的了解,甚至可以形成一些小的文章練練手。

演算法那一方向我不太懂,也不敢亂說,希望以上的能幫到你。

④ 如何自學生物信息學

一、計算機基礎,需要看三本書,一步步的學會學通,不需要刻意去找哪個書,一般linux是鳥哥私房菜,perl是小駱駝咯,R是R in action,但是看一本書只能入門,真正想成為菜鳥,必須每個要看五本書以上!我雲盤裡面有這基本上的高清列印版,大家可以去淘寶列印一下才幾十塊錢還包郵,對書比較講究的也可以買正版,也不過是一百多塊錢而已!

二、生信基礎知識,測序方面,在網路文庫找十幾篇一代二代三代測序儀資料仔細研讀,然後去優酷下載各大主流測序儀的動畫講解,再看看陳巍學基因的講解;資料庫先看看三大主流資料庫——NCBI,ENSEMBL,UCSC,還有一些也可以了解一些(uniprot,IMGT,KEGG,OMIN,TIGR,GO)同樣也是網路文庫自己搜索資料,但是這次需要自己去官網一個個頁面點擊看,一個個翻譯成中文理解吃透;數據格式講起了就多了,這個主要是在項目流程中慢慢學,或者你有機會去上課,不然你看來也是立馬忘記的,主要有sam,vcf,fasta,fastq,bed,gtf,gff,genbank,ensembl,psl等。

三、生信研究領域,各個領域主要是軟體繁多,合起來常用的估計有上百個軟體了,一般只有從業五六年以上的人才有可能把它們全部用過一遍,而且這也完全需要項目來訓練,而不能僅僅是看看軟體手冊,但是研究領域最重要的是背後的原理,需要看各大牛的綜述。

a) 生信基礎軟體(blast++套件,fastqc,flash,blast,solexaQA,NGS-QC-toolkit,SRA-toolkit,fastx-toolkit)。

b) snp-calling相關軟體(bwa,bowtie,samtools,GATK,VarScan.jar,annovar)。

c) 基因組相關軟體(velvet,SOAPdenovo2,repeatmasker,repeatscount,piler,orthMCL,inparanoid,clustw,muscle,MAFFT,quickparanoid,blast2go,RAxML,phyML)。

d) 轉錄組相關軟體(trinity,tophat,cufflinks,RseQC,RNAseq,GOseq,MISO,RSEM,khmer,screed,trimmomatic,transDecoder,vast-tools,picard-tools,htseq,cuffdiff,edgeR,DEseq,funnet,davidgo,wego,kobas,KEGG,Amigo,go)。

四、生信應用領域,講這一塊其實已經脫離了生信菜鳥的解釋范圍了,主要是想說社會上為什麼需要搞生信的人才,全是因為在腫瘤篩查,產前診斷,流行病學,個性化醫療等領域有所應用,可以造福人類!這方面政策不確定,產業不定型,所以也這絕對是藍海,但是也絕對不會有現成的資料直接培訓人才,我們必須關注各種微信公眾號,逛各種測序,醫學相關論壇,緊跟業界精英的腳本,同時追著大牛的文獻閱讀,如此這般才能保住菜鳥的身份!

⑤ 如何學好生物信息學

我碩士讀的是細胞生物學,今年4月開始在boss要求下自學perl,打聽了下,<learning perl>這本書不錯,就買來開始看,等5月份去北京參加公司的培訓班時,<learning perl>讀了一遍,<intermediate perl>看了一部分。培訓回來,我們的項目就開始做了,9月拿到所有原始數據和分析結果。然後,我對照著公司的分析報告,試著自己走一邊分析流程,中間遇到問題,自己解決不了的,就發郵件求助。有幾點需要注意:1. 我能理解你想早些玩兒數據的願望,但是在這之前,最好要有一個outline.需要知道數據從哪兒來的,怎麼產生的?其實就是測序儀的工作原理。然後是數據質量檢驗,為什麼需要數據過濾?接著是reads拼接和組裝。總之,要對整個流程有一個認識,而後在學習的過程中,再不斷回頭對比這個流程,這樣才不會有迷失的感覺。2. 有了基礎知識的鋪墊,就可以嘗試著自己做些練習了,paper上面都會給出他們的數據、原碼地址,可以找來自己試試,先看看自己能不能做出一樣的效果。當然,這時要是你手裡正好有項目,那就更好了。3. 學生物信息,paper肯定是要跟蹤的。覆蓋生物信息有趣的論文, 演算法,以及生物科學問題。這個網站還匯集了很多生物信息領域科學家的博客。再如BGI的主程羅瑞邦, SAMtools、BWA的作者Heng Li都有在這里出現。[RNA-Seq Blog](RNA-Seq Blog) 推薦新的論文、工作、培訓課程、大型會議等。如果你是生物背景的,那麼計算機方面的知識需要補一下:需要能在linux環境下舒服的工作。比如從源碼編譯安裝軟體PATH配置,再比如舒服地使用google找到問題的答案。學會使用python/perl。比如有的時候運行一個軟體老是報錯,可能就是因為在一個包含幾十萬行的文本文件里,有隨機的那麼幾千行的末個位置,多一個冒號, 這時候你知道需要怎麼做了? 學會R。要從一大堆基因裡面找出表達水平變化的基因來,需要統計分析和顯著檢驗;而要把我們的數據更直觀地展示出來,最好的方式就是圖形了吧。這兩個需要,R都能滿足。當然matlab也是可以的,區別在於R是開源工具。具備了上述技能,那麼常用的軟體就能用起來了。隨著學習的深入,可能你的問題別人也沒遇到過,這時候就需要自己動手,要麼修改現成的工具,要麼自己做一個出來。這時候,除了python/perl,或許還可以學C/C++/java,或許需要研究下比如BWT、De Bruijn Graph背後的原理。

閱讀全文

與轉行生物信息怎麼學相關的資料

熱點內容
電子產品怎麼防止員工偷盜 瀏覽:520
游戲廳里游戲幣如何交易 瀏覽:318
到村裡推銷產品如何舉報 瀏覽:274
如何編寫數量折扣程序 瀏覽:283
繽智儀表盤最右邊是哪些信息 瀏覽:646
如何去除手機程序的廣告 瀏覽:358
五一節去哪裡找工作招聘信息 瀏覽:515
中控考勤機如何讀取數據 瀏覽:298
怎麼微信里發布順風車信息 瀏覽:259
深圳石岩人才市場在哪裡 瀏覽:409
淘寶優酷檢測代理怎麼辦 瀏覽:624
如何摳產品圖裡面的字 瀏覽:485
學籍里教師信息怎麼添加 瀏覽:911
激活鎖的數據是儲存在哪個位置 瀏覽:573
煤炭生產技術員是干什麼 瀏覽:448
消化內科有什麼新技術 瀏覽:404
怎麼發送加密微信信息 瀏覽:356
蘋果怎麼備份游戲數據 瀏覽:548
財務代理要哪些條件 瀏覽:830
申請優秀團員為什麼要財務信息 瀏覽:984