Ⅰ 分析信息的方法一般包括哪些內容
信息分析方法總共有四種,分別為:
1.信息聯想法;
2.信息綜合法;
3.信息預測法;
4.信息評估法。分析方法」主要探討上市公司財務信息剖析過程所使用的分析手段:比較分析法、比率分析法、趨勢分析法和因素分析法。「比較分析法」一節說明比較分析法的三種形式及應用中需要注意的問題。比較分析法是最基本的分析方法,其作用在於揭示財務活動中的數量關系和存在的差距,從中發現問題。「比率分析法」一節歸納敘述了財務信息分析中常見的三類比率關系,並提出使用比率指標分析財務信息時需要注意的三個問題。「趨勢分析法」可以揭示上市公司財務狀況和經營狀況的變化,幫助我們分析引起變化的主要原因、變動的性質,認識公司的現狀,並預測該公司未來的發展前景。「因素分析法」主要用來確定幾個相互聯系的因素對上市公司某個經濟指標的影響程度,在分析財務指標異動原因時比較常用。常用的信息分析方法分為兩大類:定性分析與定量分析。
(一)定性分析
定性分析即通過專家知識、經驗,對事物現狀的分析以及未來發展趨勢的預測。常用的定性分析法有頭腦風暴法、德爾菲調查法、主觀概率法、相互影響矩陣分析等。定性分析法發展至今,經過不斷完善,已廣泛運用於各類信息分析之中。定性分析最大的優點是,能充分運用專家的知識、經驗,從而對一些無法收集數據的分析預測活動進行評判。定性分析方法也是一種科學的方法。首先專家的知識、經驗是一種隱性知識,是專家在長期大量的實踐中形成的經驗總結,是建立在客觀科學基礎之上的認識,如某行業領域資深專家對行業發展趨勢的判斷,這是他對行業發展全面客觀的認識基礎上作出的推斷,這種推斷具有一定的合理性。其次,某個專家的認識由於受到自身學術行業背景、主觀判斷等限制,其看法具有片面性,但綜合該領域的專家認識,就能比較全面合理的作出定性的判斷,從這個角度這種方法也是合理的。最後,定性分析由於受到主觀因素影響,而且只能提供定性的結論,因此針對具體的微觀的需要作出量化決策的問題,就需要通過定量分析。值得一提的是,定量分析由於客觀具體,用數據和科學模型說話,在某些方面更具有說服力,但是由於應用時受到諸多條件限制,有時候得出的模型和結論未必合理,切不可盲目迷信復雜的模型。定性分析與定量分析需要相互結合使用,才能做出准確科學的結論。
(二)定量分析
定量分析基本上就是統計的內容了,相關分析、回歸分析、主成分與因子分析、獨立性檢驗(卡方檢驗)、分類與聚類等。
數理統計最主要的幾個分布函數:正態分布和t分布、F分布、卡方分布,因為回歸分析里參數檢驗涉及到t檢驗和F檢驗問題,要知道它們到底用來做什麼,有什麼特性。這里簡單介紹幾個一直讓我混淆的概念。
(1)相關分析與回歸分析
兩個事物之間可能存在一定的關聯,如子女身高與父母身高,一般來說父母個子高子女身高也高,但兩者沒有必然的因果關系,那麼這兩者之間有關系,但不是因果關系,這就是相關分析,相關可以是線性相關也可以是非線性相關。而回歸分析如,廣告支出增加,銷量增加,那麼廣告和銷量之間是存在某種因果關系,可以分析廣告支出對銷量增加的影響,這就是回歸分析。
(2)回歸分析與方差分析
前面講到回歸分析,當自變數和因變數都是數值變數,即分析某個自變數的變化對因變數的影響程度就是回歸分析。而方差分析也是分析自變數對因變數的影響程度,但自變數是定性變數,如分析農作物產量(因變數)與土壤種類、肥料種類、栽培方法之間是否有影響,這就是方差分析了。方差分析結論就是,這個定性變數對因變數到底有沒有影響。
(3)線性回歸、logistic曲線與probit曲線
線性回歸就是構建一個模型方程,同回歸分析,自變數和因變數都是定量變數,並且對其取值沒有要求。logistic曲線與probit曲線自變數和因變數也都是定量變數,但是因變數的取值是0或1(這里講的是二元定性選擇回歸)。