導航:首頁 > 數據處理 > 數據分析師是哪個專業

數據分析師是哪個專業

發布時間:2022-02-01 17:24:15

數據分析屬於什麼專業

一般從事數據分析員的人都是統計學或數學專業的人。

數據分析師職位要求 :
1、計算機、統計學、數學等相關專業本科及以上學歷;
2、具有深厚的統計學、數據挖掘知識,熟悉數據倉庫和數據挖掘的相關技術,能夠熟練地使用SQL;
3、三年以上具有海量數據挖掘、分析相關項目實施的工作經驗,參與過較完整的數據採集、整理、分析和建模工作;
4、對商業和業務邏輯敏感,熟悉傳統行業數據挖掘背景、了解市場特點及用戶需求,有互聯網相關行業背景,有網站用戶行為研究和文本挖掘經驗尤佳;
5、具備良好的邏輯分析能力、組織溝通能力和團隊精神;
6、富有創新精神,充滿激情,樂於接受挑戰。

⑵ 項目數據分析師屬於什麼專業

其實都差不太多,投資項目分析師是掌握投資項目分析的基本原理、技術、方法和工具,能熟練使用「項目投資決策數據
分析 軟體」,對各類投資項目做出正確評估的專業人士。投資項目分析師通過對財務以及市場數據進行科學的定量分析,為投資主體、政府組織、金融機構和企業提供正確的投資決策。
而數據分析師是專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。 多少的是會有差異的
另外,虛機團上產品團購,超級便宜

⑶ 想當數據分析師要選什麼專業

數據分析行業逐漸被企業和從業者青睞,很多人給小編留言,咨詢從事數據分析選擇什麼專業更占優勢?今天,我們也來聊聊。

一、數學專業

正所謂「學好數理化,走遍天下都不怕」,數據分析無外乎是從大量凌亂數據中發現隱含的規律,數學往往讓人邏輯思維更嚴密,對數據更加敏感。


數據分析不是IT行業,無需精通過多編程語言,數據分析更注重實操和業務能力,且現今數據分析工具,如:Python、PowerBI等已比較容易入門。

從事數據分析,真正要提升的是邏輯思維能力、敏銳的洞察能力、良好的溝通表述能力……這些無需靠背景,通過努力也可拿下。

⑷ 數據分析員屬於什麼專業

數據分析員是一種職業,而想要成為一名數據分析員,可以選擇以下專業:
硬實力:數據分析師需要學生有一定的數學、計算機背景,從這個出發點來說,數學、統計、計算機科學等專業可以從事數據分析工作。這三個專業的同學可以雖然可以處理大量數據,並且擁有很強的數據分析能力,但是這類同學對於Business 和 Marketing缺乏了解。

軟實力:軟實力要求學生懂業務、懂管理,從這個出發點來說,信息管理、市場營銷、電子商務、社會學、金融學等專業畢業後也可以從事數據分析相關工作。不過,這幾個專業在業務方面可能專業度非常高,但是缺點也是非常明顯的:缺乏很強的數學和計算機背景,在實際操作中缺乏相關的專業技能。

更本質的看,數據分析是一種技能,人人可以學,學了都有用。這是個要用數據說話的年代,懂點數據相關知識可以更好的服務工作與學習。

⑸ 想要做數據分析師應選擇什麼專業

數據分析行業的大火以及較高的薪酬待遇,讓很多高中畢業生、在校大學生或職業遭遇瓶頸的人士開始蠢蠢欲動,想學習數據分析從而進入數據分析行列。但 有一個很困惑的問題就是:自己選擇或學習的專業似乎和數據分析沒什麼交集,這個時候選擇數據分析師這條道路會不會很艱難?擔心自己的專業跟不上數據分析的學習進度,也擔心自己的能力是否符合數據分析技能的要求。
其實,講真的。雖然數據分析這個行業有著天然的專業鄙視鏈(文理科的邏輯思維功底、編程語言接受程度上以及數理統計基礎實實在在的存在差別,這也是甲方更信賴理工科出身的重要原因,因為社科或文藝類專業,很少有學校會嚴格地按照數理邏輯去制定學生的課程培養計劃),但是並不代表文科生沒有任何機會,因為大學以前,其實我們都沒正式接觸過編程或統計學,大學本科更多的是提升一個人的思維、而不是過硬的專研能力。所以文科專業的朋友,興趣和決定也是重要因素,不能單單憑借客觀的專業背景就否定自己。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。
所以,大學選擇什麼專業,不要讓數據分析這根繩子牽著你走,而是要問自己喜歡和擅長的是什麼。如果你物理基礎不好,硬要選擇機動化專業,那四年的大學時光只會讓你覺得難熬又無奈。一切從自身出發,發掘自己的優點和長處才是最重要的。

⑹ 什麼專業才能做數據分析師

這其實不是一個很好的問題,因為問這個意義不大,因為什麼專業都能,比如說我一個數據分析師的朋友本科是學公共管理的。這個問題你得問什麼專業更適合做數據分析師?

什麼專業更適合做數據分析師呢?這涉及到數據分析師的職業勝任力。我認為其職業勝任力模型包括兩方面:1知識、技能;2 情感、態度、價值觀。

我從來不覺得什麼專業是天生的數據分析師,但也承認,如果數據分析師具備業務知識,商業頭腦,財務會計知識,強大的數據處理能力,是非常棒的。(文/艾萌atanqing,一個略懂數據分析的心理咨詢師)

⑺ 數據分析師專業技能有哪些

1. 業務領域知識(BA應該對你正在工作的領域/業務有深入的了解)。
2. 批判性思維和不同的思維方式(數據分析師的工作是通過分析數據來提供建議。他們必須以批判性思維來不同地看待這些數據)。
3. 溝通(數據分析師必須具有較強的溝通能力,以便與利益相關者互動並向他們展示結果)。
4. 技術技能(數據分析師將使良好的編程和技術技能更加成功。你至少應了解操作系統,資料庫概念,SDLC方法等。)。
5. 商業知識(具有良好的業務運作方式,如何賺錢,提高效率是數據分析師的重要力量)。
6. 人際交往能力(文學學士應具有較強的人際交往能力。你應具備軟技能,例如時間管理,聽力,口語,演講,自我激勵,態度等)。
7.專注於結果,你必須全力以赴才能獲得結果。

⑻ 數據分析師是一個什麼樣的職業

數據分析師分布在不同行業中,專門從事行業數據的搜集、整理、分析,並依據數據做出行業研究、評估和預測。數據分析師需要敏銳的數字洞察力,因此,統計、會計、保險、工程經濟、金融、數學、計算機等專業的同學對這個行業有明顯優勢,但其他行業的同學如果對這個職業感興趣,通過日常學習,掌握一些統計必備技能,亦可以從事此類工作.
主要工作領域:
1、從事投資項目審核審批和招商引資、項目評估、投資決策等工作的政府機構、企業的相關領導以及從業人員。
2、在銀行或非銀行金融機構、投資管理公司、投資管理顧問公司從事風險投資、產業投資、信貸和投資管理等方面工作的專業從業人員。
3、會計師事務所、資產評估事務所及稅務師事務所、律師相關專業人員。
4、學習財務、統計、投資、金融和企業管理等相關專業的在校應屆學生。
5、在企事業單位從事市場調查與宣傳工作的人士以及具有策劃與決策工作職能要求的人士。
6、在不同領域嘗試創業以及在投資、金融、資本運營、房地產和企業管理領域發展的各界人士。
數據分析師的工作內容分為四個層面:
1、處理臨時需求:解決業務一次性,臨時性的數據需求。
2、報表開發:根據業務需要,與開發工程師討論進行相關報表開發。
3、數據分析與挖掘:與業務同事一起溝通,分析業務問題,提供建議;根據業務需要建立各類挖掘模型。
4、數據產品化:通過數據產品化方式解決結構化業務問題。
數據分析師的基本要求:
1、懂得建立目標
數據分析是為了解決問題而去分析,不是單純為分析而分析。數據分析是有目的性的。比如:一季度ABC產品的銷售情況,是按月份為橫坐標建立各部門的圖表;各產品線ABC在一季度的銷售情況,是按部門為橫坐標建立對應的圖表。
2、針對不同人群提供不同的結論報告
數據分析要有結論報告,不同的人群報告的側重點不同。比如管理層,看的是趨勢和異常點;營銷人員看的是ROI((Return On Investment)產出比率和高用戶質量的導入情況;業務人員看的是產品對用戶的活躍度等。
3、掌握數據分析工具
如果是互聯網數據分析,可以從google GA入門,EXCEL輔助,了解數據分析的基本演算法。至於SAS,SPSS這些高級工具不一定需要。
4、不同時期要有不同的KPI(KeyPerformance Indicator,關鍵績效指標)
不斷的調整目標和發現問題是數據分析精細化的必經過程。

⑼ 數據分析師應選擇什麼專業

統計專業(有統計理論)、計算機專業專業(會編程序實現)。

⑽ 數據分析師一般是什麼專業如何成為數據分析師

數據分析師一般是計算機或者數學相關專業。成為一個合格的大數據分析師應該學習和掌握以下技能:

計算機對數據存儲和保存了大量數據,包括科學家和工程師也都了豐富的研究和應用盡可能多的提取數量。然而想從大量數據中洞察出真正和有用的,更高價值的數據,都是需要人工干預的。這些人有豐富的行業經驗和洞察力,而且對業務有深刻了解,並且能夠使用好數據分析的工作,例如Excel,SPSS,Python/R等。這種職位一般存在於高科技公司,例如PayPal和Google,相信以後人工智慧、大數據、雲計算創業的很多中小型企業,對此職位的需要也會越來越多。

對以上知識進行有重點的學習,解決的方法是讓各種技能達標:

初級數據分析師需要快速學習能力80分,數學知識40分,分析工具使用程度70分,編程語言30分,業務理解80分,邏輯思維80分,數據可視化能力40分,協調溝通能力80分。

高級數據分析師要達到快速學習能力80分,數學知識70分,分析工具使用程度90分,編程語言60分,業務理解90分,邏輯思維80分,數據可視化能力90分,協調溝通能力80分。

總之,成為分析師的重要點並非數學知識和編程能力,最重要提是業務理解和協調能力,所以針對不同的行業的分析師,要學習的行業知識也不盡相同,需要對症下葯,實施不同學習策劃和路徑。

閱讀全文

與數據分析師是哪個專業相關的資料

熱點內容
技術不好怎麼上鑽石 瀏覽:584
怎麼代理滋補品 瀏覽:717
如何從網上查檔案信息 瀏覽:826
智動門的產品有哪些 瀏覽:646
金融科技產品研發是什麼 瀏覽:419
怎麼聯系酒水代理做門頭 瀏覽:652
如何判斷五花八門信息 瀏覽:799
免費查數據的平台有哪些 瀏覽:250
市場上好的茶葉有哪些 瀏覽:685
惠州速凍食品批發市場在哪裡 瀏覽:938
微信綁定身份信息失敗怎麼辦 瀏覽:810
壓鑄成型技術怎麼學 瀏覽:581
小程序如何讓別人點奶茶 瀏覽:255
信息傳播有哪些法規規定 瀏覽:322
虢鎮中心市場屬於哪個街道 瀏覽:508
刷卡機禁止d0交易是什麼意思 瀏覽:237
微信如何群發不接受信息 瀏覽:824
聖元代理怎麼做 瀏覽:434
細胞中哪些攜帶遺傳信息 瀏覽:143
庫存車信息在哪裡找 瀏覽:672