導航:首頁 > 數據處理 > 大數據處理工具有哪些

大數據處理工具有哪些

發布時間:2022-01-30 21:27:59

大數據工作中的工具都有哪些

就目前而言,大數據越來越受到大家的重視,大數據也逐漸成為各個行業研究的重點,我們在進行使用大數據的時候,需要去了解大數據中所用到的工具,如果我們了解了大數據工具,我們才能夠更好的去使用大數據。在這篇文章中我們就給大家介紹一下關於大數據中的工具,希望能夠幫助到大家。
1.數據挖掘的工具
在進行數據分析工作的時候,我們需要數據挖掘,而對於數據挖掘來說,由於數據挖掘在大數據行業中的重要地位,所以使用的軟體工具更加強調機器學習,常用的軟體工具就是SPSS Modeler。SPSS Modeler主要為商業挖掘提供機器學習的演算法,同時,其數據預處理和結果輔助分析方面也相當方便,這一點尤其適合商業環境下的快速挖掘,但是它的處理能力並不是很強,一旦面對過大的數據規模,它就很難使用。
2.數據分析需要的工具
在數據分析中,常用的軟體工具有Excel、SPSS和SAS。Excel是一個電子表格軟體,相信很多人都在工作和學習的過程中,都使用過這款軟體。Excel方便好用,容易操作,並且功能多,為我們提供了很多的函數計算方法,因此被廣泛的使用,但它只適合做簡單的統計,一旦數據量過大,Excel將不能滿足要求。SPSS和SAS都是商業統計才會用到的軟體,為我們提供了經典的統計分析處理,能讓我們更好的處理商業問題。
3.可視化用到的工具
在數據可視化這個領域中,最常用的軟體就是TableAU了。TableAU的主要優勢就是它支持多種的大數據源,還擁有較多的可視化圖表類型,並且操作簡單,容易上手,非常適合研究員使用。不過它並不提供機器學習演算法的支持,因此不難替代數據挖掘的軟體工具。關系分析。關系分析是大數據環境下的一個新的分析熱點,其最常用的是一款可視化的輕量工具——Gephi。Gephi能夠解決網路分析的許多需求,功能強大,並且容易學習,因此很受大家的歡迎。
關於大數據需要使用的工具我們就給大家介紹到這里了,其實大數據的工具還有很多,我們在這篇文章中介紹的都是十分經典的工具,當然還有其他的工具能夠解決相應的問題,這就需要大家不斷學習,不斷吸取,才能融會貫通,讓自己的學識有一個質的飛躍。

⑵ 一般用哪些工具做大數據分析

【導讀】大數據分析工具有很多,不過絕大多數是自己開發,或在某工具上進行二次開發。

大數據業務有很多環節,大致為:

1.
數據搜集:藉助工具對研究對象進行數據採集,可以是人工採集——如街頭調查、電話采訪、現場統計……,也可以是軟體採集——如網路爬蟲、GPS軌跡、企業ERP歷史數據。

2.
數據清洗:對採集到的數據按研究價值進行整理和歸類,如:那些數據是無效數據,那的數據是被污染(被刻意篡改)將這些數據剔除,減少干擾。數據清洗的工具同樣也有人工和軟體,甚至同時使用。

3.
數據加工:對清洗後的數據按研究意圖進行整理和歸類,如價格(將出廠價、零售價、批發價、開票價、稅率、促銷價等價格信息進行歸類)、品種(按顏色、行業規格、適用環境、質地等進行歸類)、日期(將年齡、生日、期間起始日期、庫齡等日期相關的歸類)

4.
數據統計:對加工過的數據進行預測,發現數據規律。對加工過的數據進行人工抽樣(小樣本),藉助簡單的工具來發現一些規律,尋找一些蛛絲馬跡,建立數學統計模型和分析演算法。

5.
大數據分析:對原始數據(或加工過的數據),通過第4步建立的分析演算法,進行「大數據」自動分析,分析過程中,還需要不斷修正演算法,可能重新回到上述第3步,將原演算法推倒從重來。

大數據分析是一個系統工程,是對某種社會行為和自然現象(如購物、交易、人流、設備運轉、輿情、氣候等)進行分析,需要分析人員掌握很多綜合知識,然後藉助計算機的運算能力,幫助分析。

最後,回答本提問,大數據分析的工具有很多,手工算、算盤,excel,microsoft
PowerBI,python中的很多模塊,mssql,mysql……那個順手用那個,那個適合業務需要用那個,目前沒有「最好」,也沒有「行業慣例」,自己選擇自己習慣的吧。綜上所述,就是小編今天給大家整理發布的關於大數據分析的相關內容,希望可以幫助到大家。

⑶ 大數據常用的軟體工具有哪些

眾所周知,現如今,大數據越來越受到大家的重視,也逐漸成為各個行業研究的重點。正所謂「工欲善其事必先利其器」,大數據想要搞的好,使用的工具必須合格。而大數據行業因為數據量巨大的特點,傳統的工具已經難以應付,因此就需要我們使用更為先進的現代化工具,那麼大數據常用的軟體工具有哪些呢?
首先,對於傳統分析和商業統計來說,常用的軟體工具有Excel、SPSS和SAS。
Excel是一個電子表格軟體,相信很多人都在工作和學習的過程中,都使用過這款軟體。Excel方便好用,容易操作,並且功能多,為我們提供了很多的函數計算方法,因此被廣泛的使用,但它只適合做簡單的統計,一旦數據量過大,Excel將不能滿足要求。
SPSS和SAS都是商業統計才會用到的軟體,為我們提供了經典的統計分析處理,能讓我們更好的處理商業問題。同時,SPSS更簡單,但功能相對也較少,而SAS的功能就會更加豐富一點。
第二,對於數據挖掘來說,由於數據挖掘在大數據行業中的重要地位,所以使用的軟體工具更加強調機器學習,常用的軟體工具就是SPSS Modeler。
SPSS Modeler主要為商業挖掘提供機器學習的演算法,同時,其數據預處理和結果輔助分析方面也相當方便,這一點尤其適合商業環境下的快速挖掘,但是它的處理能力並不是很強,一旦面對過大的數據規模,它就很難使用。
第三,大數據可視化。在這個領域,最常用目前也是最優秀的軟體莫過於TableAU了。
TableAU的主要優勢就是它支持多種的大數據源,還擁有較多的可視化圖表類型,並且操作簡單,容易上手,非常適合研究員使用。不過它並不提供機器學習演算法的支持,因此不難替代數據挖掘的軟體工具。
第四,關系分析。關系分析是大數據環境下的一個新的分析熱點,其最常用的是一款可視化的輕量工具——Gephi。
Gephi能夠解決網路分析的許多需求,功能強大,並且容易學習,因此很受大家的歡迎。但由於它是由Java編寫的,導致處理性能並不是那麼優秀,在處理大規模數據的時候顯得力不從心,所以也是有著自己的局限性。
上面四種軟體,就是筆者為大家盤點的在大數據行業中常用到的軟體工具了,這些工具的功能都是比較強大的,雖然有著不少的局限性,但由於大數據行業分工比較明確,所以也能使用。希望大家能從筆者的文章中,獲取一些幫助。

⑷ 常用的大數據分析軟體有哪些

數據分析的工具千萬種,綜合起來萬變不離其宗。無非是數據獲取、數據存儲、數據管理、數據計算、數據分析、數據展示等幾個方面。而SAS、R、SPSS、python、excel是被提到頻率最高的數據分析工具。

⑸ 大數據分析工具有哪些

1. 開源大數據生態圈 Hadoop HDFS、Hadoop MapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。 開源生態圈活躍,並免費,但Hadoop對技術要求高,實時性稍差。 2. 商用大數據分析工具 一體機資料庫/數據倉庫(費用很高) IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。 數據倉庫(費用較高) Teradata AsterData, EMC GreenPlum, HP Vertica 等等。 數據集市(費用一般) QlikView、 Tableau 、國內永洪科技Yonghong Data Mart 等等。 前端展現 用於展現分析的前端開源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。 用於展現分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、國內永洪科技Yonghong Z-Suite等等。

⑹ 大數據分析常用的工具有哪些

第一類,數據存儲和管理類的大數據工具。
此類較為主流的使用工具本文為大家列出三種:
1.Cloudera
實際上,Cloudera只是增加了一些其它服務的Hadoop,因為大數據並不是容易搞,需要我們構建大數據集群, 而Cloudera的團隊就可以為我們提供這些服務,還能幫培訓員工。
2.MongoDB
這是一個資料庫,並且非常的受大家歡迎,大數據常常採用的是非結構化數據,而MongoDB最適用於管理此類數據。
3.Talend
Talend是數據集成和解決方案領域的領袖級企業,他們為公共雲和私有雲提供了一體化的數據平台。
我們都知道,大數據歸根結底還是數據,其根源還是始於數據的存儲,而大數據之所以稱之為「大」,就是因為它的數據量非常大,因此,存儲就變得至關重要。除此之外,將數據按照某種格式化的治理結構,也尤為重要,因為這樣,我們可以獲得洞察力。而以上三種工具,就是這方面常用的三種使用工具。
第二類,數據清理類工具。
1.OpenRefine
這是一款開源的,易於使用的,可以通過刪除重復項、空白欄位及其他錯誤來清理排列雜亂無章的數據的工具,在業內廣受好評。
2.Excel
這個不用多說,不僅在大數據,基本上所有的公司辦公軟體都會安裝Excel,在Excel中有許多的公式和函數,方便我們進行一系列的操作,當然其缺點也比較明顯,那就是不適用於龐大的數據集。
3.DataCleaner
就像它的名字一樣,DataCleaner是一款能對數據質量進行分析、比較和監督的軟體,也可以將半結構化的數據集轉化成干凈的可讀的數據集。

⑺ 大數據分析工具都有哪些

思邁特軟體Smartbi數據分析平台:定位為一站式滿足所有用戶全面需求場景的大數據分析平台。它融合了BI定義的所有階段,對接各種業務資料庫、數據倉庫和大數據分析平台,進行加工處理、分析挖掘和可視化展現;滿足所有用戶的各種數據分析應用需求,如大數據分析、可視化分析、探索式分析、企業報表平台、應用分享等等。
大數據分析的特點有以下幾點:第一,數據體量巨大。從TB級別,躍升到PB級別。第二,數據類型繁多,包括網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。大數據分析軟體讓企業能夠從數據倉庫獲得洞察力,從而在數據驅動的業務環境中提供重要的競爭優勢。
Smartbi是目前國內大數據分析軟體的佼佼者。主打的是企業報表和自助式分析2個特點,最高可以支撐20億數據的秒級呈現,適用於企業中的技術人員、業務人員和數據分析師,可以完全自主的進行探索式分析,軟體在易用性和功能上做的都很不錯,說實話,國內的BI行業由於起步較晚,能做到這個程度的確是下了一番功夫。相較於國外產品而言,Smartbi最大的優勢在於Smartbi自主搭建的實施團隊和服務團隊,強大的服務讓它成為國內首屈一指的商業智能產品。

⑻ 大數據分析的工具有哪些

1、Hadoop


Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。


2、HPCC


HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了“重大挑戰項目:高性能計算與 通信”的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。


3、Storm


Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。


4、Apache Drill


為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為“Drill”的開源項目。Apache Drill 實現了 Google's Dremel.


據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,“Drill”已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。


5、RapidMiner


RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。


6、Pentaho BI


Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。

⑼ 大數據處理分析的工具有哪些

大數據是寶藏,人工智慧是工匠。大數據給了我們前所未有的收集海量信息的可能,因為數據交互廣闊,存儲空間近乎無限,所以我們再也不用因「沒地方放」而不得棄掉那些「看似無用」的數據。
在浩瀚的數據中,如果放置這些數據,不去分析整理,那就相當於一堆廢的數據,對我們的發展沒有任何意義。今天給大家分享的就是:大數據分析工具的介紹和使用。
工具一:Pentaho BI
Pentaho BI和傳統的一些BI產品不一樣,這個框架以流程作為中心,再面向Solution(解決方案)。Pentaho BI的主要目的是集成一系列API、開源軟體以及企業級別的BI產品,便於商務智能的應用開發。自從Pentaho BI出現後,它使得Quartz、Jfree等面向商務智能的這些獨立產品,有效的集成一起,再構成完整且復雜的一項項商務智能的解決方案。

工具二:RapidMiner
在世界范圍內,RapidMiner是比較好用的一個數據挖掘的解決方案。很大程度上,RapidMiner有比較先進的技術。RapidMiner數據挖掘的任務涉及了很多的范圍,主要包括可以簡化數據挖掘的過程中一些設計以及評價,還有各類數據藝術。
工具三:Storm
Storm這個實時的計算機系統,它有分布式以及容錯的特點,還是開源軟體。Storm可以對非常龐大的一些數據流進行處理,還可以運用在Hadoop批量數據的處理。Storm支持各類編程語言,而且很簡單,使用它時相當有趣。像阿里巴巴、支付寶、淘寶等都是它的應用企業。
工具四:HPCC
某個國家為了實施信息高速路施行了一個計劃,那就是HPCC。這個計劃總共花費百億美元,主要目的是開發可擴展的一些計算機系統及軟體,以此來開發千兆比特的網路技術,還有支持太位級網路的傳輸性能,進而拓展研究同教育機構與網路連接的能力。
工具五:Hadoop
Hadoop這個軟體框架主要是可伸縮、高效且可靠的進行分布式的處理大量數據。Hadoop相當可靠,它假設了計算元素以及存儲可能失敗,基於此,它為了保證可以重新分布處理失敗的節點,維護很多工作數據的副本。Hadoop可伸縮,是因為它可以對PB級數據進行處理。
當數據變得多多益善,當移動設備、穿戴設備以及其他一切設備都變成了數據收集的「介面」,我們便可以盡可能的讓數據的海洋變得浩瀚無垠,因為那裡面「全都是寶」。

⑽ 常見的大數據分析工具有哪些

大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash

閱讀全文

與大數據處理工具有哪些相關的資料

熱點內容
吉林普洱茶葉如何代理 瀏覽:100
主機入侵檢測系統利用哪些信息 瀏覽:993
怎麼教孩子壘球技術 瀏覽:352
朝陽附近工商代理多少錢 瀏覽:555
所有程序菜單中標黃色是什麼意思 瀏覽:128
單行道逆行多少天信息 瀏覽:591
伽思珂護發素怎麼代理 瀏覽:761
三甲基鋁產品有什麼用 瀏覽:678
小程序風口在什麼地方 瀏覽:562
系統還原數據丟失怎麼辦 瀏覽:671
cnc程序里為什麼加g52 瀏覽:876
雲伺服器微信小程序用哪個套餐 瀏覽:110
銀行代理費是多少 瀏覽:322
編號是什麼數據 瀏覽:982
引流卡怎麼申請代理 瀏覽:393
哪些交易所大陸注冊 瀏覽:886
python爬取股票實時數據後如何下單 瀏覽:266
在區域代理拿桶裝水大概多少錢 瀏覽:608
逆行扣分一般多久能來信息 瀏覽:286
程序狀態反映了什麼 瀏覽:536