導航:首頁 > 數據處理 > 大數據資料庫有哪些

大數據資料庫有哪些

發布時間:2022-05-16 14:20:49

A. 全球排名前十商業版資料庫有哪些

  1. IBM

老牌大數據企業,從微軟時代過來的核心,是全球最大的信息技術和業務解決方案公司。

2. 惠普

會最為知名的是它的Vertical分析平台,而且在2012年的營收中排名第二,當之無愧的老牌商業資料庫品牌。

3. Teradata

憑借自身硬體和資料庫而聲名遠播。

4. 甲骨文

在資料庫領域,甲骨文一直都是鼎鼎大名的存在,而且它也是大數據領域最大的幾個玩家之一。

5. SPA

在商業數據中,SPA推出了最為知名的HANA內存內資料庫

6. EMC

EMC 的主要業務時幫助客戶保存並分析大數據,另外也充當著大數據分析智囊營銷科學實驗室的所在地,它們專門分析營銷類數據。

7. Amazon

時至今日,Amazon 已經成為了全球大數據領域當之無愧的王者,這一切源於它的CEO貝索斯的遠見與無與倫比的魄力

8. 微軟

微軟在數據方面有著雄厚的實力和強大的野心,它的商業數據業務也在蓬勃發展

9. 谷歌

作為全球搜索業務的老大,谷歌旗下的大數據平台憑借其身後的技術積累,成為商業數據領域內一股不可小覷的力量。

10. VMware

VMware向來以雲計算虛擬化解決方案著稱

B. 有哪些好用的大數據採集平台

1.數據超市


一款基於雲平台的大數據計算、分析系統。擁有豐富高質量的數據資源,通過自身渠道資源獲取了百餘款擁有版權的大數據資源,所有數據都經過審核,保證數據的高可用性。


2. Rapid Miner


數據科學軟體平台,為數據准備、機器學習、深度學習、文本挖掘和預測分析提供一種集成環境。


3. Oracle Data Mining


它是Oracle高級分析資料庫的代表。市場領先的公司用它最大限度地發掘數據的潛力,做出准確的預測。


4. IBM SPSS Modeler


適合大規模項目。在這個建模器中,文本分析及其最先進的可視化界面極具價值。它有助於生成數據挖掘演算法,基本上不需要編程。


5. KNIME


開源數據分析平台。你可以迅速在其中部署、擴展和熟悉數據。


6. Python


一種免費的開源語言。


關於有哪些好用的大數據採集平台,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

C. 資料庫都有哪些

常用資料庫有mysql、oracle、sqlserver、sqlite等。mysql性能較好,適用於所有平台,是當前最流行的關系型資料庫之一。sqlserver資料庫具有擴展性和可維護性,且安全性較高,是比較全面的資料庫。

D. 智慧城市數據儲存常用的資料庫有哪些

摘要 智慧城市不等同於信息化建設和數字化建設。智慧城市最本質的特徵在於「大系統」概念,在於集成性、整合性、融合性。

E. 常用的大數據工具有哪些

大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。

首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。

1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。

2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。

3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;

接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。

1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。

2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。

第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;

1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;

2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。

最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。

1、PowerPoint軟體:大部分人都是用PPT寫報告。

2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;

3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash

F. 常見的基於列存儲的大數據資料庫有哪些

目前大數據存儲有兩種方案可供選擇:行存儲和列存儲。業界對兩種存儲方案有很多爭持,集中焦點是:誰能夠更有效地處理海量數據,且兼顧安全、可靠、完整性。從目前發展情況看,關系資料庫已經不適應這種巨大的存儲量和計算要求,基本是淘汰出局。在已知的幾種大數據處理軟體中,Hadoop的HBase採用列存儲,MongoDB是文檔型的行存儲,Lexst是二進制型的行存儲。在這里,我不討論這些軟體的技術和優缺點,只圍繞機械磁碟的物理特質,分析行存儲和列存儲的存儲特點,以及由此產生的一些問題和解決辦法。

G. 大數據技術平台有哪些

Java:只要了解一些基礎即可,做大數據不需要很深的Java 技術,學java SE 就相當於有學習大數據。基礎

Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑,學會shell就能看懂腳本這樣能更容易理解和配置大數據集群。還能讓你對以後新出的大數據技術學習起來更快。

好說完基礎了,再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰溜溜的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接收方(比如Kafka)的。

Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

H. 你身邊的資料庫系統有哪些請列舉3到5個

1、MySQL

MySQL是一個快速的、多線程、多用戶和健壯的SQL資料庫伺服器。MySQL伺服器支持關鍵任務、重負載生產系統的使用,也可以將它嵌入到一個大配置(mass- deployed)的軟體中去。

2、SQL Server

SQL Server 提供了眾多的Web和電子商務功能,如對XML和Internet標準的豐富支持,通過Web對數據進行輕松安全的訪問,具有強大的、靈活的、基於Web的和安全的應用程序管理等。

3、Oracle

Oracle產品系列齊全,幾乎囊括所有應用領域,大型,完善,安全,可以支持多個實例同時運行,功能強。能在所有主流平台上運行。完全支持所有的工業標准。採用完全開放策略。可以使客戶選擇最適合的解決方案。對開發商全力支持。

(8)大數據資料庫有哪些擴展閱讀:

資料庫的發展現狀:

在資料庫的發展歷史上,資料庫先後經歷了層次資料庫、網狀資料庫和關系資料庫等各個階段的發展,資料庫技術在各個方面的快速的發展。

特別是關系型資料庫已經成為目前資料庫產品中最重要的一員,80年代以來, 幾乎所有的資料庫廠商新出的資料庫產品都支持關系型資料庫,即使一些非關系資料庫產品也幾乎都有支持關系資料庫的介面。這主要是傳統的關系型資料庫可以比較好的解決管理和存儲關系型數據的問題。

隨著雲計算的發展和大數據時代的到來,關系型資料庫越來越無法滿足需要,這主要是由於越來越多的半關系型和非關系型數據需要用資料庫進行存儲管理,以此同時,分布式技術等新技術的出現也對資料庫的技術提出了新的要求,於是越來越多的非關系型資料庫就開始出現;

這類資料庫與傳統的關系型資料庫在設計和數據結構有了很大的不同, 它們更強調資料庫數據的高並發讀寫和存儲大數據,這類資料庫一般被稱為NoSQL(Not only SQL)資料庫。 而傳統的關系型資料庫在一些傳統領域依然保持了強大的生命力。

I. 大數據包括哪些

大數據技術龐大復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、NoSQL資料庫、數據倉庫、機器學習、並行計算、可視化等各種技術范疇和不同的技術層面。
大數據主要技術組件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大數據技術包括數據採集,數據管理,數據分析,數據可視化,數據安全等內容。數據的採集包括感測器採集,系統日誌採集以及網路爬蟲等。數據管理包括傳統的資料庫技術,nosql技術,以及對於針對大規模數據的大數據平台,例如hadoop,spark,storm等。數據分析的核心是機器學習,當然也包括深度學習和強化學習,以及自然語言處理,圖與網路分析等。

J. 大數據用什麼資料庫

大數據現在通常採用的都是雲資料庫。

閱讀全文

與大數據資料庫有哪些相關的資料

熱點內容
如何將數據某幾位數隱藏 瀏覽:436
白牡丹怎麼代理 瀏覽:903
為什麼市場上的凍排骨便宜 瀏覽:291
答題助手小程序怎麼用 瀏覽:877
租房如何引流小程序 瀏覽:443
海量數據被稱為什麼 瀏覽:819
atm機顯示交易失敗怎麼回事 瀏覽:201
微信數據佔用多怎麼處理 瀏覽:917
臨沂土雜市場在哪個路上啊 瀏覽:946
電腦怎麼自己編程序 瀏覽:350
簡單的小程序為什麼人都在做 瀏覽:995
什麼東西是市場沒有的 瀏覽:868
想自學數控技術下載什麼軟體好呢 瀏覽:631
vs怎麼讀取txt文件里的數據 瀏覽:449
洛川縣勞務市場在哪裡 瀏覽:829
速買通交易手續費是多少 瀏覽:299
在哪裡可以查到本企業報關數據 瀏覽:26
白燕盞代理要什麼條件 瀏覽:811
監察站信息員有哪些 瀏覽:609
什麼印花技術洗了不掉 瀏覽:430