『壹』 簡述數據倉庫有哪些主要的特徵
1、數據倉庫是面向主題的;操作型資料庫的數據組織面向事務處理任務,而數據倉庫中的數據是按照一定的主題域進行組織。主題是指用戶使用數據倉庫進行決策時所關心的重點方面,一個主題通常與多個操作型信息系統相關。
2、數據倉庫是集成的,數據倉庫的數據有來自於分散的操作型數據,將所需數據從原來的數據中抽取出來,進行加工與集成,統一與綜合之後才能進入數據倉庫;
數據倉庫中的數據是在對原有分散的資料庫數據抽取、清理的基礎上經過系統加工、匯總和整理得到的,必須消除源數據中的不一致性,以保證數據倉庫內的信息是關於整個企業的一致的全局信息。
數據倉庫的數據主要供企業決策分析之用,所涉及的數據操作主要是數據查詢,一旦某個數據進入數據倉庫以後,一般情況下將被長期保留,也就是數據倉庫中一般有大量的查詢操作,但修改和刪除操作很少,通常只需要定期的載入、刷新。
數據倉庫中的數據通常包含歷史信息,系統記錄了企業從過去某一時點(如開始應用數據倉庫的時點)到當前的各個階段的信息,通過這些信息,可以對企業的發展歷程和未來趨勢做出定量分析和預測。
3、數據倉庫是不可更新的,數據倉庫主要是為決策分析提供數據,所涉及的操作主要是數據的查詢;
4、數據倉庫是隨時間而變化的,傳統的關系資料庫系統比較適合處理格式化的數據,能夠較好的滿足商業商務處理的需求。穩定的數據以只讀格式保存,且不隨時間改變。
『貳』 倉庫數據從哪裡能找到
可以在公司的管理系統找到。
管理系統可支持多賬號異地登入,各各倉庫的管理員登入系統後可以看到所有倉庫實時的統計數據。
通常數據倉庫的數據來自各個業務應用系統。業務系統中的數據形式多種多樣,可能是Oracle、MySQL、SQL Server等關系資料庫里的結構化數據,可能是文本、CSV等平面文件或Word、Excel文檔中的非結構化數據,還可能是HTML、XML等自描述的半結構化數據。這些業務數據經過一系列的數據抽取、轉換、清洗,最終以一種統一的格式裝載進數據倉庫。
『叄』 什麼是數據倉庫
數據倉庫是在企業管理和決策中面向主題的、集成的、與時間相關的、不可修改的數據集合
數據倉庫之父Bill Inmon在1991年出版的「Building the Data Warehouse」一書中所提出的定義被廣泛接受——數據倉庫(Data Warehouse)是一個面向主題的(Subject Oriented)、集成的(Integrated)、相對穩定的(Non-Volatile)、反映歷史變化(Time Variant)的數據集合,用於支持管理決策(Decision Making Support)。
◆面向主題:操作型資料庫的數據組織面向事務處理任務,各個業務系統之間各自分離,而數據倉庫中的數據是按照一定的主題域進行組織的。
◆集成的:數據倉庫中的數據是在對原有分散的資料庫數據抽取、清理的基礎上經過系統加工、匯總和整理得到的,必須消除源數據中的不一致性,以保證數據倉庫內的信息是關於整個企業的一致的全局信息。
◆相對穩定的:數據倉庫的數據主要供企業決策分析之用,所涉及的數據操作主要是數據查詢,一旦某個數據進入數據倉庫以後,一般情況下將被長期保留,也就是數據倉庫中一般有大量的查詢操作,但修改和刪除操作很少,通常只需要定期的載入、刷新。
◆反映歷史變化:數據倉庫中的數據通常包含歷史信息,系統記錄了企業從過去某一時點(如開始應用數據倉庫的時點)到目前的各個階段的信息,通過這些信息,可以對企業的發展歷程和未來趨勢做出定量分析和預測。
數據倉庫系統是一個信息提供平台,他從業務處理系統獲得數據,主要以星型模型和雪花模型進行數據組織,並為用戶提供各種手段從數據中獲取信息和知識。
從功能結構化分,數據倉庫系統至少應該包含數據獲取(Data Acquisition)、數據存儲(Data Storage)、數據訪問(Data Access)三個關鍵部分
『肆』 倉庫管理應該注重哪些數據誰能幫我給出答案哦 謝謝
計金計統每庫計統每量、數庫數金
入金每存每統量月月呆、領與金額計進廢統貨額與額、金統每月額、數統報滯量月與統數耗計每品計率品量、轉、損統計周、
料計額月月與
『伍』 數據倉庫的主要特點有哪些
數據倉庫是面向主題的、集成的、非易失的和時變的數據集合,用以支持管理決策。
傳統資料庫中,最大的特點是面向應用進行數據的組織,各個業務系統可能是相互分離的。而數據倉庫則是面向主題的。主題是一個抽象的概念,是較高層次上企業信息系統中的數據綜合、歸類並進行分析利用的抽象。在邏輯意義上,它是對應企業中某一宏觀分析領域所涉及的分析對象。
通過對分散、獨立、異構的資料庫數據進行抽取、清理、轉換和匯總便得到了數據倉庫的數據,這樣保證了數據倉庫內的數據關於整個企業的一致性。
數據倉庫中的綜合數據不能從原有的資料庫系統直接得到。因此在數據進入數據倉庫之前,必然要經過統一與綜合,這一步是數據倉庫建設中最關鍵、最復雜的一步,所要完成的工作有:1.要統一源數據中所有矛盾之處,如欄位的同名異義、異名同義、單位不統一、字長不一致,等等。2.進行數據綜合和計算。數據倉庫中的數據綜合工作可以在從原有資料庫抽取數據時生成,但許多是在數據倉庫內部生成的,即進入數據倉庫以後進行綜合生成的。
非易失性
數據倉庫的數據反映的是一段相當長的時間內歷史數據的內容,是不同時點的資料庫快照的集合,以及基於這些快照進行統計、綜合和重組的導出數據。
數據非易失性主要是針對應用而言。數據倉庫的用戶對數據的操作大多是數據查詢或比較復雜的挖掘,一旦數據進入數據倉庫以後,一般情況下被較長時間保留。數據倉庫中一般有大量的查詢操作,但修改和刪除操作很少。因此,數據經加工和集成進入數據倉庫後是極少更新的,通常只需要定期的載入和更新。
數據倉庫包含各種粒度的歷史數據。數據倉庫中的數據可能與某個特定日期、星期、月份、季度或者年份有關。數據倉庫的目的是通過分析企業過去一段時間業務的經營狀況,挖掘其中隱藏的模式。雖然數據倉庫的用戶不能修改數據,但並不是說數據倉庫的數據是永遠不變的。分析的結果只能反映過去的情況,當業務變化後,挖掘出的模式會失去時效性。因此數據倉庫的數據需要更新,以適應決策的需要。從這個角度講,數據倉庫建設是一個項目,更是一個過程。數據倉庫的數據隨時間的變化表現在以下幾個方面:
(1) 數據倉庫的數據時限一般要遠遠長於操作型數據的數據時限。
(2) 操作型系統存儲的是當前數據,而數據倉庫中的數據是歷史數據。
(3) 數據倉庫中的數據是按照時間順序追加的,它們都帶有時間屬性。
『陸』 倉庫報表有哪些有哪些
在倉庫管理方面,需要的其實是三類報表,一類就是采購的相關報表,有關於各種商品的采購訂單、采購方面的付款信息、采購入庫的時間與信息、還有一些可能產生的采購退貨方面的情況等等,這些都是需要製作報表的。
第二類倉庫管理的報表,就是庫存管理方面的相關信息了,像是產品的入庫、出庫、調撥、組裝、拆分等等,這些信息也都需要在倉庫相關的報表 裡面一一記錄,並且還需要進行庫存的盤點,從而使得庫存的情況能夠一目瞭然。
倉庫管理的第三類報表,是銷售方面相關的,只要是有關於倉庫裡面的各種產品的相關銷售情況,也都需要在這個報表裡面進行記錄,各個銷售訂單、或是銷售退貨的訂單等等,這些也都需要並入到倉庫管理的信息當中去,才能夠帶來更好的全面信息。
倉庫報表一般用列表式,報表內容按照表頭順序平鋪式展示,便於查看詳細信息。一般基礎信息表可以用列表式體現。多用於展示客戶名單、產品清單、物品清單、訂單、發貨單等單據或當日工作記錄,當日銷售記錄等記錄條數比較少的數據。
(6)倉庫有哪些數據擴展閱讀:
倉庫報表的分類還可能有:
1、摘要式
使用頻率最高的一種報表形式,多用於數據匯總統計。如按人員匯總回款額、客戶數等;按日期分組匯總應收額、回款額等。.摘要式報表和列表式報表唯一的差別是多了數據匯總的功能。
2、矩陣式
主要用於多條件數據統計。如:按照客戶所有人和客戶所屬地區兩個值匯總客戶數量。矩陣式報表只有匯總數據,但是查看起來更清晰,更適合在數據分析時使用。
3、鑽取式
是改變維的層次,變換分析的粒度。它包括向上鑽取和向下鑽取。例如對於各地區各年度的銷售情況,可以生成地區與年度的合計行,也可以生成地區或者年度的合計行。
『柒』 數據倉庫有哪些
數據倉庫,英文名稱為 Data Warehouse,可簡寫為 DW 或 DWH。數據倉庫,是為企業所有級別的決策制定過程,提供所有類型數據支持的戰略集合。它是單個數據存儲,出於分析性報告和決策支持目的而創建。 為需要業務智能的企業,提供指導業務流程改進、監視時間、成本、質量以及控制。
數據倉庫是決策支持系統(dss)和聯機分析應用數據源的結構化數據環境。數據倉庫研究和解決從資料庫中獲取信息的問題。數據倉庫的特徵在於面向主題、集成性、穩定性和時變性。
數據倉庫 ,由數據倉庫之父比爾·恩門(Bill Inmon)於 1990 年提出,主要功能仍是將組織透過資訊系統之聯機事務處理(OLTP)經年累月所累積的大量資料,透過數據倉庫理論所特有的資料儲存架構,做有系統的分析整理,以利各種分析方法如聯機分析處理(OLAP)、數據挖掘(Data Mining)之進行,並進而支持如決策支持系統(DSS)、主管資訊系統(EIS)之創建,幫助決策者能快速有效的自大量資料中,分析出有價值的資訊,以利決策擬定及快速回應外在環境變動,幫助建構商業智能(BI)。
數據倉庫之父比爾·恩門(Bill Inmon)在 1991 年出版的「Building the Data Warehouse」(《建立數據倉庫》)一書中所提出的定義被廣泛接受——數據倉庫(Data Warehouse)是一個面向主題的(Subject Oriented)、集成的(Integrated)、相對穩定的(Non-Volatile)、反映歷史變化(Time Variant)的數據集合,用於支持管理決策(Decision Making Support)。
1、數據倉庫是面向主題的;操作型資料庫的數據組織面向事務處理任務,而數據倉庫中的數據是按照一定的主題與進行組織。主題是指用戶使用數據倉庫進行決策時所關心的重點方面,一個主題通常與多個操作性信息系統相關。
2、數據倉庫是集成的,數據倉庫的數據有來自於分散的操作型數據,將所需數據從原來的數據中抽取出來,進行加工與集成,統一與綜合之後才能進入數據倉庫;
數據倉庫中的數據是在對原有分散的資料庫數據抽取、清理的基礎上經過系統加工、匯總和整理得到的,必須消除源數據中的不一致性,以保證數據倉庫內的信息是關於整個企業的一致的全局信息。
數據倉庫的數據主要供企業決策分析之用,所涉及的數據操作主要是數據查詢,一旦某個數據進入數據倉庫以後,一般情況下將被長期保留,也就是數據倉庫中一般有大量的查詢操作,但修改和刪除操作很少,通常只需要定期的載入、刷新。
數據倉庫中的數據通常包含歷史信息,系統記錄了企業從過去某一時點(如開始應用數據倉庫的時點)到當前的各個階段的信息,通過這些信息,可以對企業的發展歷程和未來趨勢做出定量分析和預測。
3、數據倉庫是不可更新的,數據倉庫主要是為決策分析提供數據,所涉及的操作主要是數據的查詢;
4、數據倉庫是隨時間而變化的,傳統的關系資料庫系統比較適合處理格式化的數據,能夠較好地滿足商業商務處理的需求。穩定的數據以只讀格式保存,且不隨時間改變。
5、匯總的。操作性數據映射成決策可用的格式。
6、大容量。時間序列數據集合通常都非常大。
7、非規范化的。Dw 數據可以是而且經常是冗餘的。
8、元數據。將描述數據的數據保存起來。
9、數據源。數據來自內部的和外部的非集成操作系統。
『捌』 倉庫應做哪些數據分析
庫存數據分析、盤點差異分析、存貨周轉率、倉庫運營成本分析(租金、操作費用等)
『玖』 倉庫主管應掌握哪些數據
如果是生產型企業,應該知道與庫存相關所有數據:
如: 發貨數量
生產產品數量
生產原料采購/領用數量
庫存數量、安全庫存量
確保生產供應量、銷售出貨量,定期通知采購和生產主管。
以上是我接觸過的企業所了解,可能不是很全面
『拾』 管理學原理數據倉庫的基本分析數據包括哪些
資料庫與數據倉庫的本質差別如下:
1、邏輯層面/概念層面:資料庫和數據倉庫其實是一樣的或者及其相似的,都是通過某個資料庫,基於某種數據模型來組織、管理數據。但是,資料庫通常更關注業務交易處理(OLTP),而數據倉庫更關注數據分析層面(OLAP),由此產生的資料庫模型上也會有很大的差異。
2、資料庫通常追求交易的速度,交易完整性,數據的一致性等,在資料庫模型上主要遵從範式模型(1NF,2NF,3NF等),從而盡可能減少數據冗餘,保證引用完整性;而數據倉庫強調數據分析的效率,復雜查詢的速度,數據之間的相關性分析,所以在資料庫模型上,數據倉庫喜歡使用多維模型,從而提高數據分析的效率。
3、產品實現層面:資料庫和數據倉庫是有些不同的,資料庫通常使用行式存儲,如SAP ASE,Oracle, Microsoft SQL Server,而數據倉庫傾向使用列式存儲,如SAP IQ,SAP HANA。