導航:首頁 > 數據處理 > 如何選擇數據分析方法

如何選擇數據分析方法

發布時間:2022-05-13 10:27:29

數據分析怎麼做

一、 具備基本的數據素養

1. 具備基本的統計學概念

先來說一下最基礎的概念:平均值,中位數,百分位數,眾數,離散程度,方差,標准差。這里不一一贅述,只簡單說一下均值和中位數的差異。 均值:即平均數,優勢是,均值跟所有數據都相關,劣勢是容易受到極端值影響。
比如,你和你的3個好友,跟比爾蓋茨組成一個團隊,然後這個團隊的人均身價是200億美金,你會覺得自己是有錢人嗎? 中位數:只跟排在中間的數據相關,優點是不受極端值影響,缺點是缺乏敏感性。

2. 避免數據邏輯錯誤常見數據邏輯謬誤1:相關當因果

「有研究結果表明:顏值高的人收入也更高。」 聽到這個結論,你會不會覺得應該去整容? 但有可能是因為,顏值高的人相對比較自信,而自信的人容易在職場上獲得成功,所以收入高。也有可能,是收入高的人有能力裝扮自己,所以看起來顏值更高。所以說,上面這個表達,只是在說顏值和收入相關,但沒有說兩者是因果關系。

二、數據溝通和表達:如何用數據講故事

如果你能夠具備足夠的數據素養,知道如何呈現數據,同時能夠把數據表達出來,那麼就能在故事當中融入足夠有說服力的數據,故事自然變得很有說服力。

1. 理解溝通目的和對象

如果你說服一個客戶購買你的理財產品,你會怎麼跟他說?

第一種:這個理財產品有10%的概率會虧;

第二種:這個理財產品有90%的概率能賺。

當然是後者,他聽完大概率願意買,但如果是前一種說法,他可能會很恐懼。 所以,當你在公司裡面跟不同的對象溝通時,也應該呈現不一樣的數據。
比如,高層可能關心公司整體營收、盈利等等相關數據,中層可能關心他們部門的KPI數據,而主管更關注某個活動、某個舉措的成功失敗情況。

2. 選擇合適的數據表達類型

怎麼樣用更加合適的數據圖表類型?這里有些經驗干貨分享給大家,常用表格適用范圍如下:

o 散點圖(適合相關)

o 折線圖(適合趨勢)

o 橫的和豎的條形圖(適合對比)

o 瀑布圖(適合演變)

o 熱力圖(適合聚焦)

o 雷達圖(適合多指標)

o 詞雲圖(適合看分布)等等

3. 符合數據可視化原則

數據的可視化也非常重要,因為如果沒有可視化,就是一些數字羅列,那就跟文字信息沒什麼差異了。
數據可視化的幾個原則:閱讀門檻別太高,不要過多顏色,突出關鍵信息,文本與數據呼應。

⑵ 數據分析有什麼思路

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

⑶ 常用的數據分析方法有哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

⑷ 如何選擇數據分析工具

如何選擇數據分析工具,總結了以下3點供大家參考。

(1)多數據源支持:數據分析工具須支持連接多個數據源以進行集成分析。由於網路技術的飛速發展,產生的非結構化數據(如文本、圖像、聲音和網頁)越來越多。

除了支持關系資料庫(如Oracle、SQLServer、Access、MySQL等),還需要考慮MongoDB、Redis、HBase等非關系資料庫是否被支持,不同的產品對上述數據管理提供了不同程度的支持。

(2)分析指標的多樣性:為了更好地表示內容,數據分析本身需要足夠詳細,並挖掘出數據背後真正有價值的信息。數據分析的維度和指標因行業和用戶群體而異。

所以,在選擇數據分析工具時,最好選擇一種詳盡、全面的工具來分析指標,使結果更具深度,這樣才能滿足用戶的要求,才能藉助數據分析工具挖掘出所有數據背後的真正意義。


(3)操作便捷:一款好用的數據分析工具不僅需要具備強大的分析功能,還需要具備便捷的操作性。像Python和R語言也可以用作數據分析,但是它們用起來並不方便,沒有掌握相關的IT知識很難上手。

BI工具就是一類易上手操作簡單的數據分析工具,只需要簡單的滑鼠拖拽維度和指標,即可快速生成圖表,全程無需編寫表達式,零學習成本,一分鍾上手。讓你們工作上得心應手。
Smartbi精心為中國企業量身定製的本土化、敏捷型、可嵌入的商業智能(BI)平台。bi商業智能分析工具和報表工具都是從數據開始,不僅包括數據的收集方式,還包括數據的存儲、組織和訪問方式。在一個充滿了可供選擇的市場中,在開始選擇之前,您不妨先比較下各種軟體,以及弄清自己的數據需求。

思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。

思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台

⑸ 大數據的數據分析方法有哪些如何學習

1.分類

分類是一種根本的數據剖析方法,數據依據其特點,可將數據對象區分為不同的部分和類型,再進一步剖析,能夠進一步發掘事物的本質。

2.回歸

回歸是一種運用廣泛的計算剖析辦法,能夠經過規定因變數和自變數來確定變數之間的因果關系,建立回歸模型,並依據實測數據來求解模型的各參數,然後評價回歸模型是否能夠很好的擬合實測數據,假如能夠很好的擬合,則能夠依據自變數作進一步預測。

3.聚類

聚類是依據數據的內涵性質將數據分紅一些聚合類,每一聚合類中的元素盡可能具有相同的特性,不同聚合類之間的特性不同盡可能大的一種分類方法,其與分類剖析不同,所區分的類是不知道的,因此,聚類剖析也稱為無指導或無監督的學習。

4.類似匹配

類似匹配是經過必定的辦法,來核算兩個數據的類似程度,類似程度通常會用一個是百分比來衡量。類似匹配演算法被用在很多不同的核算場景,如數據清洗、用戶輸入糾錯、引薦計算、剽竊檢測系統、主動評分系統、網頁查找和DNA序列匹配等領域。

5.頻頻項集

頻頻項集是指事例中頻頻出現的項的集合,如啤酒和尿不濕,Apriori演算法是一種發掘相關規矩的頻頻項集演算法,其核心思想是經過候選集生成和情節的向下關閉檢測兩個階段來發掘頻頻項集,現在已被廣泛的應用在商業、網路安全等領域。

⑹ 如何做數據分析

數據分析行業應用,一般數據來源:智能手機 感知裝置 物聯網 社群媒體等 雲計算存儲.cda官網有很多行業案例,比如
風能發電業務場景
風力發電機有一個葉片,時間長了就要換,否則不安全,過去這個葉片一般10年換一次,因為沒辦法知道具體產品的使用情況,只能根據以往葉片老化的情況來估算。但這家公司在葉片上裝了感測器,就能檢測每個葉片的具體使用情況了,風大的地方,葉片老化快,可能8年就要換,風力均勻的地方,有些葉片可能用15年,這樣就能節省資本更新的成本了。
而且,過去這家公司只生產設備,這些設備被賣到國外,具體安裝到什麼地方,他是不知道的,有了感測器,公司就能知道這些發電機被安裝到哪裡,這些地方的風力是大是小,一年四季哪天有風哪天有雨,這些數據都可以獲取。根據這些數據,就能知道哪些地區風力資源豐富,有重點地規劃未來市場。傳統的行業利用大數據,就能更好地實現市場預判和銷售提升,分分鍾實現逆襲。

⑺ 數據分析方法有哪些

細分分析法

細分分析法是最常用的數據分析方法,對一個指標按不同的維度進行細分查看,往往就能找到影響數據指標漲幅的原因。

⑻ 數據分析方法

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

閱讀全文

與如何選擇數據分析方法相關的資料

熱點內容
打開小程序自動直播怎麼關閉 瀏覽:201
微信哪個小程序捐步數有錢 瀏覽:216
什麼軟體可以用到小程序 瀏覽:932
微信掃描身份證用什麼小程序 瀏覽:252
自熱米飯怎麼從市場推廣 瀏覽:267
維護平台數據的叫什麼系統 瀏覽:759
有哪些點斑的產品 瀏覽:508
鄭州海通公司的產品怎麼樣 瀏覽:193
縣警務技術崗怎麼樣 瀏覽:251
速騰怎麼顯示信息 瀏覽:305
二手汽車轉讓信息怎麼寫 瀏覽:389
淘寶客適合推廣什麼產品 瀏覽:302
中蒙皮革市場在哪裡 瀏覽:996
政府什麼部門負責信息公關 瀏覽:949
做店群的藍海產品怎麼找 瀏覽:594
企業技術創新怎麼寫 瀏覽:671
大數據將重點應用於什麼 瀏覽:994
總代理如何清庫存 瀏覽:553
股票怎麼樣交易能賺到錢呢 瀏覽:613
江門市琯溪市場在什麼位置 瀏覽:808