1. 大數據具體是什麼
二、什麼是大數據(大數據是什麼?)
大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
三、發展歷程(大數據發展是否成熟?)
目前,我國大數據產業正處於高速發展期,多種商業模式得到市場印證,新產品和服務不斷推出,細分市場走向差異化競爭。
四、和傳統數據的區別(跟傳統數據有什麼區別?)
1、傳統數據信息化:
傳統數據信息化大多是存貯在本地,非全部公開數據資源,例如市場調研數據、企業數據、生產數據、製造數據、消費數據、醫療數據、金融數據等數據資源;把握數據資源的企業或行業也必然成為大數據的直接受益者。
2、大數據之移動互聯網:
移動互聯網的快速發展,搜索引擎及智能手機等移動設備成為重要的數據入口。社交網路、電子商務以及各類應用APP等將分散的"小數據"變成"大數據"。
3、大數據之物聯網:
物聯網的發展能夠實現"萬物互聯",所有事物產生的信息都是數據,所有事物之間都具有"數據化"的聯系。
五、應用領域(大數據用在哪些地方?)
2. 大數據是什麼
大數據本身是一個抽象的概念。從一般意義上講,大數據是指無法在有限時間內用常規軟體工具對其進行獲取、存儲、管理和處理的數據集合。
目前,業界對大數據還沒有一個統一的定義,但是大家普遍認為,大數據具備 Volume、Velocity、Variety 和 Value 四個特徵,簡稱「4V」,即數據體量巨大、數據速度快、數據類型繁多和數據價值密度低,如下圖 所示。
3. 大數據是什麼的數據
大數據並不只是數據量大而已,它是數據存儲+分布式調度+數據分析的結合
大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。
大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性
隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。
很多情況下大數據來源於生活。
比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。
大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。
4. 大數據是什麼意思,大數據概念怎麼理解
大數據(bigdata,megadata),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Bigdata)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Bigdata)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Bigdata)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據應用的弊端
雖然大數據的擁護者看到了使用大數據的巨大潛力,但也有隱私倡導者擔心,因為越來越多的人開始收集相關數據,無論是他們是否會故意透露這些數據或通過社交媒體張貼,甚至他們在不知不覺中通過分享自己的生活而公布了一些具體的數字細節。
分析這些巨大的數據集會使我們的預測能力產生虛假的信息,將導致作出許多重大和有害的錯誤決定。此外,數據被強大的人或機構濫用,自私的操縱議程達到他們想要的結果。
5. 請問大數據是什麼
思邁特軟體Smartbi的功能非常完善,報表、填報、BI 一應俱全,可以說是國內相關軟體產品的佼佼者。接下來我們就具體來看看Smartbi的優秀之處吧!
1、簡單易用上手快
國產BI思邁特Smartbi融合Excel界面進行自助取數完成分析,有Excel基礎即可上手,自然語言分析實現「所見即所得」。
2、億萬數據秒級響應
國產BI思邁特Smartbi支持滾動載入,這樣的操作使報表的載入速度得到了極大的提升,負載均衡讓內置查詢引擎實現線性擴充,MPP高速緩存庫抽取數據,億萬數據也能達成秒級響應。
3、強大的計算能力
國產BISmartbi提供分布式計算,支持表計算、跨庫計算、OLAP多維計算、時間智能計算、SQL擴展、Python擴展,所有的表現層使用統一的數據模型,具備非常強大的計算能力!
4、系統穩定性有保障
國產BI思邁特Smartbi支持分布式session共享、擴展包熱載入,持續擴展產品補丁包更新機制,還能可視化地進行系統檢查和監控,安全有效地保障系統的穩定性。
5、便捷的分享協同
國產BI思邁特Smartbi提供應用商店、消息中心、數據導航、數據答疑、互助共享等功能,通過分享和協作解決企業無沉澱、無共享、無文化的問題,幫助企業構建完善的數據化運營的生態系統。
6. 大數據的名詞解釋是什麼
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中,大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法)大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、veracity(真實性)。大數據需要特殊的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
大數據的4個「V」,或者說特點有四個層面:第一,數據體量巨大。從TB級別,躍升到PB級別;第二,數據類型繁多。前文提到的網路日誌、視頻、圖片、地理位置信息等等。第三,數據的來源,直接導致分析結果的准確性和真實性。若數據來源是完整的並且真實,最終的分析結果以及決定將更加准確。第四,處理速度快,1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。業界將其歸納為4個「V」
從某種程度上說,大數據是數據分析的前沿技術。簡言之,從各種各樣類型的數據中,快速獲得有價值信息的能力,就是大數據技術。明白這一點至關重要,也正是這一點促使該技術具備走向眾多企業的潛力。
7. 大數據是指什麼如何解釋
關於大數據,給出的定義是:
一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
簡單理解為:
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。
大數據的核心作用是數據價值化,簡單說就是大數據讓數據產生各種「價值」,這個數據價值化的過程就是大數據要做的主要事情。
8. 大數據是什麼
大數據的概念可能不同的人會有不同的理解,我自己從08年開始從事大數據相關的工作,那個時候我們是覺得自己搞的是雲計算和數據倉庫,而到了2011、2012年的時候,國內大數據的概念才興起來,之後就是炒了三年的概念。
因為從事這一方向,這幾年不斷會有人問我什麼是大數據?我一直都回答不好。在最近的幾個月,我對這一概念思考的更多一些,結合看過的一些資料(如《大數據時代》、《數學之美》第二版、《矽谷之謎》、吳軍的演講材料等)和實際的經歷,算是有了一些認識。與其說認識,還不如說是總結,換個角度看待這個問題,分為大數據概念和大數據思維。
我把大數據的概念總結為四個字:大、全、細、時。
大數據之大
我們先來看一組數據:
網路每天採集的用戶行為數據有1.5PB以上
全國各地級市今天的蘋果價格數據有2MB
1998年Google抓取的互聯網頁面共有47GB(壓縮後)
一台風力發電機每天產生的振動數據有50GB
網路每天的行為數據1.5個PB夠大吧?我們毫無懷疑這是大數據。但全國各個地級市今天的蘋果價格只有2MB大小,是典型的小數據吧?但如果我們基於這個數據,做一個蘋果分銷的智能調度系統,這就是個牛逼的大數據應用了。Google在剛成立的時候,佩奇和布林下載了整個互聯網的頁面,在壓縮後也就47GB大小,現在一個U盤都能裝的下,但Google搜索顯然是個大數據的應用。如果再來看一台風機每天的振動數據可能都有50GB,但這個數據只是針對這一台風機的,並不能從覆蓋面上,起到多大的作用,這我認為不能叫大數據。
這里就是在強調大,是Big不是Large,我們強調的是抽象意義的大。