導航:首頁 > 數據處理 > 大數據測試掌握哪些

大數據測試掌握哪些

發布時間:2022-05-07 01:54:46

大數據分析需掌握哪些方面

1.Analytic Visualizations(可視化分析)



不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。



2.Data Mining Algorithms(數據挖掘演算法)



可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。



3.Predictive Analytic Capabilities(預測性分析能力)



數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。



4.Semantic Engines(語義引擎)



我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。



5.Data Quality and Master Data Management(數據質量和數據管理)



數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。



關於大數據分析需掌握哪些方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑵ 大數據需要學習什麼樣的知識

1、大數據專業,一般是指大數據採集與管理專業;

2、課程設置

大數據專業將從大數據應用的三個主要層面(即數據管理、系統開發、海量數據分析與挖掘)系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法,包括實現和分析協同過濾演算法、運行和學習分類演算法、分布式Hadoop集群的搭建和基準測試、分布式Hbase集群的搭建和基準測試、實現一個基於、Maprece的並行演算法、部署Hive並實現一個的數據操作等等,實際提升企業解決實際問題的能力。

3、核心技術

(1)大數據與Hadoop生態系統。詳細介紹分析分布式文件系統HDFS、集群文件系統ClusterFS和NoSQL Database技術的原理與應用;分布式計算框架Maprece、分布式資料庫HBase、分布式數據倉庫Hive。

(2)關系型資料庫技術。詳細介紹關系型資料庫的原理,掌握典型企業級資料庫的構建、管理、開發及應用。

(3)分布式數據處理。詳細介紹分析Map/Rece計算模型和Hadoop Map/Rece技術的原理與應用。

(4)海量數據分析與數據挖掘。詳細介紹數據挖掘技術、數據挖掘演算法–Minhash, Jaccard and Cosine similarity,TF-IDF數據挖掘演算法–聚類演算法;以及數據挖掘技術在行業中的具體應用。

(5)物聯網與大數據。詳細介紹物聯網中的大數據應用、遙感圖像的自動解譯、時間序列數據的查詢、分析和挖掘。

(6)文件系統(HDFS)。詳細介紹HDFS部署,基於HDFS的高性能提供高吞吐量的數據訪問。

(7)NoSQL。詳細介紹NoSQL非關系型資料庫系統的原理、架構及典型應用。

4、行業現狀

今天,越來越多的行業對大數據應用持樂觀的態度,大數據或者相關數據分析解決方案的使用在互聯網行業,比如網路、騰訊、淘寶、新浪等公司已經成為標准。而像電信、金融、能源這些傳統行業,越來越多的用戶開始嘗試或者考慮怎麼樣使用大數據解決方案,來提升自己的業務水平。

在「大數據」背景之下,精通「大數據」的專業人才將成為企業最重要的業務角色,「大數據」從業人員薪酬持續增長,人才缺口巨大。

對大數據分析有興趣的小夥伴們,不妨先從看看大數據分析書籍開始入門!B站上有很多的大數據教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

⑶ 大數據工程師要掌握哪些技術

1、 掌握至少一種資料庫開發技術:Oracle、Teradata、DB2、Mysql等,靈活運用SQL實現海量數據ETL加工處理。

2、 熟悉Linux系統常規shell處理命令,靈活運用shell做的文本處理和系統操作。

3、 有從事分布式數據存儲與計算平台應用開發經驗,熟悉Hadoop生態相關技術並有相關實踐經驗著優先,重點考察Hdfs、Maprece、Hive、Hbase。

4、 熟練掌握一門或多門編程語言,並有大型項目建設經驗者優先,重點考察Java、Python、Perl。

5、 熟悉數據倉庫領域知識和技能者優先,包括但不局限於:元數據管理、數據開發測試工具與方法、數據質量、主數據管理。

6、 掌握實時流計算技術,有storm開發經驗者優先。

⑷ 大數據測試工程師需要具備哪些技能

1、測試基本知識


想成為大數據測試工程師之前,有些測試必備的技能,比如軟體測試執行提出了我們開展軟體測試的執行活動所需要涉及的執行過程以及相關策略;同時了解常用德測試活動中的經驗之談,理論知識的梳理和基本的測試技巧掌握。


2、Linux及環境搭建 、Docker容器實現分布式虛擬化技巧


一個成熟的數據從業者應該懂得靈活的運用數據尋找,獲取,安裝,Debug,分享,團隊合作,Linux是知名的開源系統,在這個系統下環境的配置將變得非常容易和透明。Linux操作系統作為常見的底層操作系統,在軟體開發、軟體測試過程中都會經常接觸和使用,很多企業的伺服器都是Linux環境的,對於測試人員而言,也都會掌握相應的Linux命令。


3、SQL和資料庫相關的技能


資料庫是另外一個比較重要的部分,想像一下你不可能一直使用Excel去處理數據,畢竟超過十萬行的數據用Excel就比較吃力了。這個時候SQL就是必須要用的,可以說這個是一個核心技能。有的人可能會說SQL非常簡單,但是當你實際應用的時候你會發現你在學校學的那些簡單Query完全就跟不上需求了。


4、 Python/java語言


先說一下Python, Python是一種萬能的語言,適用性非常強,除了數據分析還能夠做很多的事情,比如編寫程序,網站開發,深度學習等等。如果你決定使用Python,那麼你需要了解的點主要是各種包的搜索和調用,函數的編寫和嵌套,數據類型的把握(list, tuple, series, dict),條件判斷,循環迭代等等。


5、性能測試、框架開發的技能掌握


這個也是成為大數據測試工程師前,你必須要掌握得部分。在了解性能測試各方面的知識和經驗的同時,培養自己的獨立思考和解決問題的能力,掌握軟體性能測試核心技術、工具使用以及項目實戰技巧。

⑸ 大數據分析應該掌握哪些基礎知識

Java基礎語法

· 分支結構if/switch

· 循環結構for/while/do while

· 方法聲明和調用

· 方法重載

· 數組的使用

· 命令行參數、可變參數

IDEA

· IDEA常用設置、常用快捷鍵

· 自定義模板

· 關聯Tomcat

· Web項目案例實操

面向對象編程

· 封裝、繼承、多態、構造器、包

· 異常處理機制

· 抽象類、介面、內部類

· 常有基礎API、集合List/Set/Map

· 泛型、線程的創建和啟動

· 深入集合源碼分析、常見數據結構解析

· 線程的安全、同步和通信、IO流體系

· 反射、類的載入機制、網路編程

Java8/9/10/11新特性

· Lambda表達式、方法引用

· 構造器引用、StreamAPI

· jShell(JShell)命令

· 介面的私有方法、Optional加強

· 局部變數的類型推斷

· 更簡化的編譯運行程序等

MySQL

· DML語言、DDL語言、DCL語言

· 分組查詢、Join查詢、子查詢、Union查詢、函數

· 流程式控制制語句、事務的特點、事務的隔離級別等

JDBC

· 使用JDBC完成資料庫增刪改查操作

· 批處理的操作

· 資料庫連接池的原理及應用

· 常見資料庫連接池C3P0、DBCP、Druid等

Maven

· Maven環境搭建

· 本地倉庫&中央倉庫

· 創建Web工程

· 自動部署

· 持續繼承

· 持續部署

Linux

· VI/VIM編輯器

· 系統管理操作&遠程登錄

· 常用命令

· 軟體包管理&企業真題

Shell編程

· 自定義變數與特殊變數

· 運算符

· 條件判斷

· 流程式控制制

· 系統函數&自定義函數

· 常用工具命令

· 面試真題

Hadoop

· Hadoop生態介紹

· Hadoop運行模式

· 源碼編譯

· HDFS文件系統底層詳解

· DN&NN工作機制

· HDFS的API操作

· MapRece框架原理

· 數據壓縮

· Yarn工作機制

· MapRece案例詳解

· Hadoop參數調優

· HDFS存儲多目錄

· 多磁碟數據均衡

· LZO壓縮

· Hadoop基準測試

Zookeeper

· Zookeeper數據結果

· 內部原理

· 選舉機制

· Stat結構體

· 監聽器

· 分布式安裝部署

· API操作

· 實戰案例

· 面試真題

· 啟動停止腳本

HA+新特性

· HDFS-HA集群配置

Hive

· Hive架構原理

· 安裝部署

· 遠程連接

· 常見命令及基本數據類型

· DML數據操作

· 查詢語句

· Join&排序

· 分桶&函數

· 壓縮&存儲

· 企業級調優

· 實戰案例

· 面試真題

Flume

· Flume架構

· Agent內部原理

· 事務

· 安裝部署

· 實戰案例

· 自定義Source

· 自定義Sink

· Ganglia監控

Kafka

· 消息隊列

· Kafka架構

· 集群部署

· 命令行操作

· 工作流程分析

· 分區分配策略

· 數據寫入流程

· 存儲策略

· 高階API

· 低級API

· 攔截器

· 監控

· 高可靠性存儲

· 數據可靠性和持久性保證

· ISR機制

· Kafka壓測

· 機器數量計算

· 分區數計算

· 啟動停止腳本

DataX

· 安裝

· 原理

· 數據一致性

· 空值處理

· LZO壓縮處理

Scala

· Scala基礎入門

· 函數式編程

· 數據結構

· 面向對象編程

· 模式匹配

· 高階函數

· 特質

· 註解&類型參數

· 隱式轉換

· 高級類型

· 案例實操

Spark Core

· 安裝部署

· RDD概述

· 編程模型

· 持久化&檢查點機制

· DAG

· 運算元詳解

· RDD編程進階

· 累加器&廣播變數

Spark SQL

· SparkSQL

· DataFrame

· DataSet

· 自定義UDF&UDAF函數

Spark Streaming

· SparkStreaming

· 背壓機制原理

· Receiver和Direct模式原理

· Window原理及案例實操

· 7x24 不間斷運行&性能考量

Spark內核&優化

· 內核源碼詳解

· 優化詳解

Hbase

· Hbase原理及架構

· 數據讀寫流程

· API使用

· 與Hive和Sqoop集成

· 企業級調優

Presto

· Presto的安裝部署

· 使用Presto執行數倉項目的即席查詢模塊

Ranger2.0

· 許可權管理工具Ranger的安裝和使用

Azkaban3.0

· 任務調度工具Azkaban3.0的安裝部署

· 使用Azkaban進行項目任務調度,實現電話郵件報警

Kylin3.0

· Kylin的安裝部署

· Kylin核心思想

· 使用Kylin對接數據源構建模型

Atlas2.0

· 元數據管理工具Atlas的安裝部署

Zabbix

· 集群監控工具Zabbix的安裝部署

DolphinScheler

· 任務調度工具DolphinScheler的安裝部署

· 實現數倉項目任務的自動化調度、配置郵件報警

Superset

· 使用SuperSet對數倉項目的計算結果進行可視化展示

Echarts

· 使用Echarts對數倉項目的計算結果進行可視化展示

Redis

· Redis安裝部署

· 五大數據類型

· 總體配置

· 持久化

· 事務

· 發布訂閱

· 主從復制

Canal

· 使用Canal實時監控MySQL數據變化採集至實時項目

Flink

· 運行時架構

· 數據源Source

· Window API

· Water Mark

· 狀態編程

· CEP復雜事件處理

Flink SQL

· Flink SQL和Table API詳細解讀

Flink 內核

· Flink內核源碼講解

· 經典面試題講解

Git&GitHub

· 安裝配置

· 本地庫搭建

· 基本操作

· 工作流

· 集中式

ClickHouse

· ClickHouse的安裝部署

· 讀寫機制

· 數據類型

· 執行引擎

DataV

· 使用DataV對實時項目需求計算結果進行可視化展示

sugar

· 結合Springboot對接網路sugar實現數據可視化大屏展示

Maxwell

· 使用Maxwell實時監控MySQL數據變化採集至實時項目

ElasticSearch

· ElasticSearch索引基本操作、案例實操

Kibana

· 通過Kibana配置可視化分析

Springboot

· 利用Springboot開發可視化介面程序

⑹ 大數據測試需要學什麼

首先是基礎階段。這一階段包括:關系型資料庫原理、LINUX操作系統原理及應用。在掌握了這些基礎知識後,會安排這些基礎課程的進階課程,即:數據結構與演算法、MYSQL資料庫應用及開發、SHELL腳本編程。在掌握了這些內容之後,大數據基礎學習階段才算是完成了。
接下來是大數據專業學習的第二階段:大數據理論及核心技術。第二階段也被分為了基礎和進階兩部分,先理解基礎知識,再進一步對知識內容做深入的了解和實踐。基礎部分包括:布式存儲技術原理與應用、分布式計算技術、HADOOP集群搭建、運維;進階內容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源碼分析、HIVE、HBASE、Mongodb、HADOOP項目實戰。
完成了這部分內容的學習,學員們就已經掌握了大數據專業大部分的知識,並具有了一定的項目經驗。但為了學員們在大數據專業有更好的發展,所學知識能更廣泛地應用到大數據相關的各個崗位,有個更長遠的發展前景。
第三階段叫做數據分析挖掘及海量數據高級處理技術。基礎部分有:PYTHON語言、機器學習演算法、FLUME+KAFKA;進階部分有:機器學習演算法庫應用、實時分析計算框架、SPARK技術、PYTHON高級語言應用、分布式爬蟲與反爬蟲技術、實時分析項目實戰、機器學習演算法項目實戰。

⑺ 大數據需要掌握哪些技能

大數據技術體系龐大,包括的知識較多

1、學習大數據首先要學習Java基礎

Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學hadoop,

2、學習大數據必須學習大數據核心知識

Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。

3、學習大數據需要具備的能力

數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。

4、學習大數據可以應用的領域

大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛。

⑻ 學大數據需要具備什麼基礎

第一、計算機基礎知識。計算機基礎知識涉及到三大塊內容,包括操作系統、編程語言和計算機網路,其中操作系統要重點學習一下Linux操作系統,編程語言可以選擇Java或者Python。

如果要從事大數據開發,應該重點關注一下Java語言,而如果要從事大數據分析,可以重點關注一下Python語言。計算機網路知識對於大數據從業者來說也比較重要,要了解基本的網路通信過程,涉及到網路通信層次結構和安全的相關內容。

第二、資料庫知識。資料庫知識是學習大數據相關技術的重要基礎,大數據的技術體系有兩大基礎,一部分是分布式存儲,另一部分是分布式計算,所以存儲對於大數據技術體系有重要的意義。

初學者可以從Sql語言開始學起,掌握關系型資料庫知識對於學習大數據存儲依然有比較重要的意義。另外,在大數據時代,關系型資料庫依然有大量的應用場景。

第三、數學和統計學知識。從學科的角度來看,大數據涉及到三大學科基礎,分別是數學、統計學和計算機,所以數學和統計學知識對於大數據從業者還是比較重要的。

從大數據崗位的要求來看,大數據分析崗位(演算法)對於數學和統計學知識的要求程度比較高,大數據開發和大數據運維則稍微差一些,所以對於數學基礎比較薄弱的初學者來說,可以考慮向大數據開發和大數據運維方向發展。

大數據的價值體現在以下幾個方面:

(1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷;

(2)做小而美模式的中小微企業可以利用大數據做服務轉型;

(3)面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。

⑼ 大數據技術要掌握的要點有哪些

Zookeeper:安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。需要把它安裝正確 ,讓它正常的跑起來。

Mysql:在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root密碼,創建資料庫。

Sqoop:這個是用於把Mysal裡面的數據導入Hadoop裡面。

Hive:和Pig同理,想要變得厲害可以都學習。

Oozie:可以幫你管理你的Hive或者MapRece、Spark腳本還能檢查你的程序執行的是否正確。

Hbase:這個是Hadoop生態體系中的NOSQL資料庫,是按照key和value的形式存儲的並且key是唯一的。所以可以幫你做數據排重,它與MYSQL相比存儲的數據量大。

Kafka:這個是隊列工具。可以利用它來做線上實時數據的入庫或者是入HDFS,與Flume的工具配合使用,專門用來提供對數據進行簡單處理。

Spark:這個工具是用來彌補MapRece處理數據速度上的缺點,特點就是把數據裝載到內存裡面去計算。適合做迭代運算,Java語言或者Scala都可以操作它,他們都是用JVM的。

關於大數據技術要掌握的要點有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

閱讀全文

與大數據測試掌握哪些相關的資料

熱點內容
奶粉微商代理需要哪些資質 瀏覽:805
中端醫療產品怎麼樣 瀏覽:756
兼職代理護膚品怎麼樣 瀏覽:255
技術崗位有哪些等級 瀏覽:546
拼多多老產品如何找到賣點 瀏覽:481
最新稅法二手房交易需要哪些稅費 瀏覽:565
手機怎麼沒有數據網路連接 瀏覽:741
廣聯達狗如何添加程序 瀏覽:566
好友祝福用微信小程序代碼怎麼寫 瀏覽:948
huaweipay消費交易是什麼意思 瀏覽:695
鞍山人才市場在哪個區 瀏覽:879
拍視頻如何掛上小程序 瀏覽:495
如何對境外信息進行管控 瀏覽:334
機床專業和機電技術有什麼區別 瀏覽:421
參與代碼評審的是什麼程序員 瀏覽:491
外匯交易中移動止損是什麼意思 瀏覽:527
數控加工位置偏差如何修改程序 瀏覽:453
宋代理學如何融合 瀏覽:646
什麼證券被限制交易 瀏覽:618
零售店賣什麼產品比較好 瀏覽:340