㈠ 資料庫方面有哪些職稱
oracle的工程師認證有OCP和OCM,
認證需要參加原廠或原廠授權的培訓機構的培訓,然後參加原廠考試,考試分機試和筆試。
㈡ 學大數據可以從事什麼職業
1、數據分析師。數據分析師 是數據師的一種,指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
作為一名數據分析師、至少需要熟練SPSS、STATISTIC、Eviews、SAS等數據分析軟體中的一門,至少能用Acess等進行資料庫開發,至少掌握一門數學軟體如matalab、mathmatics進行新模型的構建,至少掌握一門編程語言。總之,一個優秀的數據分析師,應該業務、管理、分析、工具、設計都不落下。
2、 數據架構師。
數據架構師是負責平台的整體數據架構設計,完成從業務模型到數據模型的設計工作 ,根據業務功能、業務模型,進行資料庫建模設計,完成各種面向業務目標的數據分析模型的定義和應用開發,平台數據提取、數據挖掘及數據分析。
從事數據架構師這個職位,需要具備較強的業務理解和業務抽象能力,具備大容量事物及交易類互聯網平台的資料庫模型設計能力,對調度系統,元數據系統有非常深刻的認識和理解,熟悉常用的分析、統計、建模方法,熟悉數據倉庫相關技術,如 ETL、報表開發,熟悉Hadoop,Hive等系統並有過實戰經驗。
6、Hadoop運維工程師
你需要具備的技術知識:平台大數據環境的部署維護和技術支持, 應用故障的處理跟蹤及統計匯總分析,應用安全、數據的日常備份和應急恢復。
7、Hadoop開發工程師
Hadoop是一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。Hadoop是一個能夠對大量數據進行分布式處理的軟體框架, 以一種可靠、高效、可伸縮的方式進行數據處理。所以說Hadoop解決了大數據如何存儲的問題,因而在大數據培訓機構中是必須學習的課程。
Hadoop開發工程師需要具備的技術:基於hadoop、hive等構建數據分析平台,進行數據平台架構設計、開發分布式計算業務,應用大數據、數據挖掘、分析建模等技術,對海量數據進行挖掘,發現其潛在的關聯規則,對hadoop、hive、hbase、Map/Rece相關產品進行預研、開發,Hadoop相關技術解決海量數據處理問題、大數據量的分析, Hadoop相關業務腳本的性能優化與提升,不斷提高系統運行效率。
8、大數據可視化工程師
隨著大數據在人們工作及日常生活中的應用,大數據可視化也改變著人類的對信息的閱讀和理解方式。從網路遷徙到谷歌流感趨勢,再到阿里雲推出縣域經濟可視化產品,大數據技術和大數據可視化都是幕後的英雄。
㈢ 資料庫相關職位
個人感覺資料庫架構師和數據倉庫工程師的能力要求要高些,對大型資料庫的應用要達到熟練或精通的水平,因此,待遇也相對來說好一些。資料庫開發工程師的層次相對低些,待遇也稍低。數據架構師,一般企業需要一兩個足以。
數據倉庫工程師在金融行業或者大型網站的就業機會會大些。
資料庫開發工程師的就業路子最寬。以下是一些個案,僅供參考。
一、資料庫架構師
任職要求:
1.項目開發經驗;
2.豐富的SQL Server、DB2 、Oracle、Sybase大型資料庫研發設計經驗;
3.豐富的資料庫關系模型和物理模型建模經驗;
4.有資料庫性能優化經驗;
5.掌握數據倉庫的基本理論,有數據倉庫的實際開發經驗;二、數據倉庫工程師
職位描述:
1、對數據倉庫系統的架構設計,編寫專業的系統設計文檔;
2、配合項目經理進行項目需求分析、應用分解、各模塊的概要和詳細設計;
3、實施項目開發。
職位要求:
1、有1年以上的ETL、OLAP工具的實際開發經驗,有BO、MSTR、Insight、Hyperion Intelligence(Brio)等其中一種開發工具實踐經驗者優先;
2、熟練使用Oracle等資料庫,精通SQL、存儲過程,有Java和資料庫性能調優的經驗者優先;
3、深入理解數據倉庫、數據建模等概念,有商業智能相關系統實際建模經驗者優先;三、資料庫開發工程師
崗位職責:
1、資料庫設計與優化;
2、存儲過程設計與開發;
3、審核、指導開發工程師有關資料庫設計、數據存取方法;
4、協助工程部門實施資料庫部署;
5、為測試部門提供資料庫支持。
任職要求:
1、本科學歷,計算機相關專業
2、兩年以上工作經驗和資料庫設計/開發/管理經驗
3、熟悉計算機和資料庫等相關基礎知識
4、熟悉linux/unix、windows等相關技術
5、精通oracle等大型資料庫技術,熟練掌握資料庫開發技術,熟練使用sqlplus進行存儲過程開發,精確sql語言。
6、掌握系統數據存儲架構設計技能和數據備份管理技術
7、良好的溝通能力和執行能力;正直、務實、敬業、善於思考、良好的團隊合作精神
㈣ 與大數據相關的工作職位有哪些
說個大概吧
大數據開發工程師:負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計與產品開發等;
數據分析師:進行數據搜集、整理、分析,針對數據分析結論給管理銷售運營提供指導意義的分析意見;
數據挖掘工程師:商業智能,用戶體驗分析,預測流失用戶等;需要過硬的數學和統計學功底以外,對演算法的代碼實現也有很高的要求。
資料庫開發:設計,開發和實施基於客戶需求的資料庫系統,通過理想介面連接資料庫和資料庫工具,優化資料庫系統的性能效率等;
數據管理:資料庫設計、數據遷移、資料庫性能管理、數據安全管理,故障檢修問題、數據備份、數據恢復等;
數據科學家:清洗,管理和組織(大)數據,利用演算法和模型提高數據處理效率、挖掘數據價值、實現從數據到知識的轉換;
數據產品經理:把數據和業務結合起來做成數據產品。
㈤ 大數據有哪些職位和工作機會
下面是比較熱門的幾個大數據崗位:
1、首席數據官(CDO)
首席數據官的工作內容非常多,職責也很復雜,他們負責公司的數據框架搭建、數據管理、數據安全保證、商務智能管理、數據洞察和高級分析。因此,首席數據師必須個人能力出眾,同時還需要具備足夠的領導力和遠見,找准公司發展目標,協調應變管理過程。
2、營銷分析師/客戶關系管理分析師
客戶忠誠度項目、網路分析和物聯網技術積攢了大量的用戶數據,很多先進公司已經在使用相關策略來支持公司的發展計劃。尤其是市場部門能夠運用這些數據進行更有針對性的營銷。營銷分析師能夠發揮他們在Excel和SQL等數據分析工具方面的專業特長,對客戶進行細分,確保數字化營銷能夠到達目標客戶群體。
3、數據工程師
隨著Hadoop和非結構化數據倉庫的流行,所有分析功能的第一要務就是要得到正確的數據。高水平的工程師需要掌握數據管理技能,熟悉提取轉換載入過程,很多公司都急需這樣的人才。事實上,很多首席數據官甚至認為,數據工程師才是大數據相關行業中最重要的職位。
4、商務智能開發工程師
商務智能開發工程師的最基本職能,是管理結構數據從資料庫分配至終端用戶的過程。商務智能(BI)曾經只是商務金融的基礎,現在已經獨立出來,成為了單獨的部門,很多商務智能團隊正在搭建自服務指示板,這樣運營經理就能快速且有效地獲取高性能數據,評價公司運營情況。
5、數據可視化
隨著指示板和可視化工具的增多,商務智能「前端」研發工程師需要更熟練掌握Tableau、QlikView/QlikSense、SiSense和Looker。能夠使用d3.js在網路瀏覽器中製作數據可視化的研發工程師也越來越受到公司歡迎。很多大公司開出的年薪已經超過了7萬5千英鎊,平均日薪500多英鎊。
6、大數據工程師
正如上文提到過的,數據工程師的工作是負責管理公司的數據,包括數據的收集,存儲、處理和分析。大數據工程師需要能夠搭建並維護大型異構數據框架,這些數據通常是在MongoDB等NoSQL資料庫中。很多公司採用Hadoop框架和很多Hadoop次級軟體包,如Hive(數據軟體),Pig(數據流語言)和Spark(多編程模型)。
㈥ 市面上有哪些類型的數據崗位,它們有何不同
有許多人也會特別的喜歡關於數據後面的工作,那麼市面上也是有很多數據崗位的。這個時候大家也可以去根據自己的需求,和自己的專業特徵來選擇。因為現在大數據的技術已經成為追捧的對象,所以有許多的崗位是為這樣的一個專業開放的。比如說資料庫設計師,對於這樣的一些資料庫設計師來說,主要的職責就是將一些概念數據的模型,轉化為一種邏輯和內部的數據框架。
還有就是在分析這樣的一些數據的時候,必須要對於每一個特定的數據的意義有著正確的理解與解釋,否則可能會產生很大的差異。那麼對於數據分析來說,其實發展的非常迅速,所以對於這樣的一些數據科學家來說,也需要去充分的掌握現在市場和社會和上面所產生的一些大的數據,一些細微的數據。
㈦ 與資料庫相關的工作職位有哪些
去51JOB或者智聯注冊個ID上去查找就很明了了
一般有DBA資料庫管理員類,需要較高的水平和工作經驗
另外的話還有資料庫開發類似PL/SQL工程師什麼的
另外就是數據分析,數據挖掘什麼的了針對數據倉庫,商業智能BI什麼的
還有SAP,ERP應用的
還有就是數據建模什麼的
你最好去招聘網上具體看看各職業的要求
㈧ 大數據有哪些工作崗位
1、大數據開發工程師
開發,建設,測試和維護架構,負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計與產品開發等。
2、數據分析師
收集,處理和執行統計數據分析;運用工具,提取、分析、呈現數據,實現數據的商業意義,需要業務理解和工具應用能力。
3、數據挖掘工程師
數據建模、機器學習和演算法實現;商業智能,用戶體驗分析,預測流失用戶等;需要過硬的數學和統計學功底以外,對演算法的代碼實現也有很高的要求。
4、數據架構師
需求分析,平台選擇,技術架構設計,應用設計和開發,測試和部署;高級演算法設計與優化;數據相關系統設計與優化,需要平台級開發和架構設計能力。成都加米穀大數據培訓機構,大數據開發,數據分析與挖掘。
5、資料庫開發
設計,開發和實施基於客戶需求的資料庫系統,通過理想介面連接資料庫和資料庫工具,優化資料庫系統的性能效率等。
6、資料庫管理
資料庫設計、數據遷移、資料庫性能管理、數據安全管理,故障檢修問題、數據備份、數據恢復等。
7、數據科學家
數據挖掘架構、模型標准、數據報告、數據分析方法;利用演算法和模型提高數據處理效率、挖掘數據價值、實現從數據到知識的轉換。
8、數據產品經理
把數據和業務結合起來做成數據產品;平台線提供基礎平台和通用的數據工具,業務線提供更加貼近業務的分析框架和數據應用。
㈨ 想從事資料庫相關的工作,迷惑中
資料庫方面的工作分為兩類:
一類是利用SQL做開發,這個是對資料庫的應用。一般來說,都是編程人員,利用介面比如JDBC調用資料庫的SQL來做查詢。這種工作重點還是在編程上。因為涉及到的資料庫方面的知識並不算多。說白了,就是和「資料庫編碼相關的程序員」。
另一類是資料庫管理人員,主要負責資料庫的備份,日常維護,代碼優化等等。相對來說對資料庫方面的知識要求較高,對技術要求也較高。也就是所謂的DBA。
大二、大三時候,其實多數人對自己將來的規劃都不明確。都認為自己將來會從事很多編程的工作。因為所學的科目大多和編程有關系。可實際上最終真正從事編程的人最多隻是55開。所以你不必過早的把自己定位成一個編程人員。
程序開發是很辛苦的,而且很傷身體,做不了太久。我建議你多拓寬自己的思維,將來有很多其他的機會,比如BA,比如架構師,比如QA等等。
至於你說的,你們的課程和資料庫有關。那是必然的,任何計算機相關專業都必須學到資料庫。但「面向對象程序設計」和資料庫的關系,就不是很大了。
你要抓住計算機相關專業的幾門核心課程:數據結構,操作系統,組成原理等等。這些東西將來才是真正幫助你的東西。至於如何編程,考什麼證書,這些都是次要的。我坦白的跟你講,這些東西你工作之後有大把的時間去學。而基礎那時候就難補了。所以你將來能走多遠,很大程度上是看你現在的基礎怎麼樣。那些「看起來沒什麼用」的課,將來會對你有很大的幫助。
-------------------------------
綜上,你過早的把自己定位在一個資料庫開發人員,這本就是錯誤的,打好基礎才是重點。計算機不只是編程,而編程未必像你想的那麼有趣。
oracle資料庫也好,db2資料庫也罷,都只不過是別人提供的一種軟體而已。你只要掌握了資料庫基本的增查刪改語句,對於將來資料庫的開發就基本夠用了。至於優化什麼的,是要到具體的工作中去學。更何況,你將來即使是和資料庫相關的開發,也是主要集中在編程上而非資料庫上。