1. 什麼是雲計算什麼是大數據二者有何聯系
雲計算的關鍵詞在於「整合」,無論你是通過現在已經很成熟的傳統的虛擬機切分型技術,還是通過google後來所使用的海量節點聚合型技術,他都是通過將海量的伺服器資源通過網路進行整合,調度分配給用戶,從而解決用戶因為存儲計算資源不足所帶來的問題。
大數據正是因為數據的爆發式增長帶來的一個新的課題內容,如何存儲如今互聯網時代所產生的海量數據,如何有效的利用分析這些數據等等。
他倆之間的關系你可以這樣來理解,雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。
(1)大數據雲計算是什麼擴展閱讀:
雲計算常與網格計算、效用計算、自主計算相混淆。
網格計算:分布式計算的一種,由一群鬆散耦合的計算機組成的一個超級虛擬計算機,常用來執行一些大型任務;
效用計算:IT資源的一種打包和計費方式,比如按照計算、存儲分別計量費用,像傳統的電力等公共設施一樣;
自主計算:具有自我管理功能的計算機系統。
事實上,許多雲計算部署依賴於計算機集群(但與網格的組成、體系結構、目的、工作方式大相徑庭),也吸收了自主計算和效用計算的特點。
被普遍接受的雲計算特點如下:
(1) 超大規模
「雲」具有相當的規模,Google雲計算已經擁有100多萬台伺服器, Amazon、IBM、微軟、Yahoo等的「雲」均擁有幾十萬台伺服器。企業私有雲一般擁有數百上千台伺服器。「雲」能賦予用戶前所未有的計算能力。
(2) 虛擬化
雲計算支持用戶在任意位置、使用各種終端獲取應用服務。所請求的資源來自「雲」,而不是固定的有形的實體。應用在「雲」中某處運行,但實際上用戶無需了解、也不用擔心應用運行的具體位置。只需要一台筆記本或者一個手機,就可以通過網路服務來實現我們需要的一切,甚至包括超級計算這樣的任務。
(3) 高可靠性
「雲」使用了數據多副本容錯、計算節點同構可互換等措施來保障服務的高可靠性,使用雲計算比使用本地計算機可靠。
(4) 通用性
雲計算不針對特定的應用,在「雲」的支撐下可以構造出千變萬化的應用,同一個「雲」可以同時支撐不同的應用運行。
(5) 高可擴展性
「雲」的規模可以動態伸縮,滿足應用和用戶規模增長的需要。
(6) 按需服務
「雲」是一個龐大的資源池,你按需購買;雲可以像自來水,電,煤氣那樣計費。
大數據特徵:
1 容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;
2 種類(Variety):數據類型的多樣性;
3 速度(Velocity):指獲得數據的速度;
4 可變性(Variability):妨礙了處理和有效地管理數據的過程。
5 真實性(Veracity):數據的質量
6 復雜性(Complexity):數據量巨大,來源多渠道
7 價值(value):合理運用大數據,以低成本創造高價值
想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
2. 大數據和雲計算的區別是什麼啊
一、大數據與雲計算的概念及特點
大數據:在維基網路中,大數據(big data)是用於數據集的一個術語,是指大小超出了常用軟體工具在運行時間內可以承受的收集,管理和處理數據能力的數據集。與傳統海量數據相比,它不僅在數據規模上呈幾何倍數的增長,還在於它集收集,分類,處理,分析於一體,能夠充分挖掘出一份數據的潛在價值。
雲計算:根據美國國家標准與技術研究院定義:雲計算是一種按使用量付費的模式,這種模式提供可用的、便捷的、按需的網路訪問,進入可配置的計算資源共享池(資源包括網路,伺服器,存儲,應用軟體,服務),這些資源能夠被快速提供,只需投人很少的管理工作,或與服務供應商進行很少的交互。也就是說雲計算既是一種商業模式,也是一種計算模式。
二、大數據和雲計算的區別及聯系
雲計算是一種商業模式,也是一種計算模式。所以,雲計算是在大數據的基礎上進行的,大數據的目的主要是通過海量數據發現潛在價值,使人們更好的理解和把握信息,雲計算更傾向於提供服務,二者相互關聯。
1、大數據和雲計算的區別
1)目的不同:大數據是為了發掘信息價值,而雲計算主要是通過互聯網管理資源,提供相應的服務。
2)對象不同:大數據的對象是數據,雲計算的對象是互聯網資源以及應用等。
3)背景不同:大數據的出現在於用戶和社會各行各業所產生大的數據呈現幾何倍數的增長;雲計算的出現在於用戶服務需求的增長,以及企業處理業務的能力的提高。
4)價值不同:大數據的價值在於發掘數據的有效信息,雲計算則可以大量節約使用成本。
2、大數據和雲計算的聯系
大數據和雲計算的相同點在於它們都是數據存儲和處理服務,都需要佔用大量的存儲和計算資源,因而都要用到海量數據存儲技術、海量數據管理技術等/隨著數據量的遞增、數據處理復雜程度的增加,相應的性能和擴展瓶頸將會越來越大。在這種情況下,雲計算所具備的彈性伸縮和動態調配、資源的虛擬化,按需使用,以及綠色節能等基本要素正好契合了新型大數據處理技術的需求。在數據量爆發增長以及對數據處理要求越來越高的先當下,實現大數據和雲計算的結合,才能最大程度上發揮二者的優勢,滿足用戶的需求,帶來更高的商業價值。
三、如何理解大數據與雲計算的關系
簡單來說就是,大數據的超大容量自然需要容量大,速度快,安全的存儲,滿足這種要求的存儲離不開雲計算。高速產生的大數據只有通過雲計算的方式才能在可等待的時間內對其進行處理。同時,雲計算是提高對大數據的分析與理解能力的一個可行方案。大數據的價值也只有通過數據挖掘才能從低價值密度的數據中發現其潛在價值,而大數據挖掘技術的實現離不開雲計算技術。總之,雲計算是大數據處理的核心支撐技術,是大數據挖掘的主流方式。沒有互聯網,就沒有虛擬化技術為核心的雲計算技術,沒有雲計算就沒有大數據處理的支撐技術。
其實,雲計算是工業時代的電,大數據就是福特生產線,雲存儲就是鋼鐵工業。也就是說,沒有鋼鐵,就沒有電,就不會有大規模工業化生產。沒有雲計算,大數據不會出來,如果雲計算沒有解決雲存儲的問題,也不會出來。
四、大數據和雲計算的發展前景
1、提升網路質量。隨著互聯網以及移動互聯網的持續發展網路將會更加繁忙,用於監測網路狀態的信令數據也會快速增長。通過對海量運維信息以及信令數據的智能分析,能夠提高網路維護的實時性,預測網路流量峰值,預警異常流量。從而有效地防止網路擁塞和系統宕機,從而提高網路服務質量,提升用戶體驗。
2、提升客戶價值通過使用大數據分析、數據挖掘等工具和方法,企業能夠整合來自市場部門、銷售部門、服務部門的數據,從各種不同的角度全面了解自己的客戶,對客戶形象進行精準刻畫,以尋找目標客戶,制定有針對性的營銷計劃、產品組合或商業決策,提升客戶價值。
3、提升行業信息化水平。智慧城市的發展以及教育、醫療、交通、環境保護等關繫到國計民生的行業,都具有極大的信息化需求。
4、提高用戶體驗。高速的信息處理,更優質的服務,能夠更好地滿足用戶需要,使用戶能夠以最廉價的成本為生活帶來更好的便利,最大程度上提高了用戶的生活學習工作質量。
3. 什麼是雲計算和大數據
什麼是雲計算和大數據?雲計算與大數據要學啥
近年來,雲計算可謂是出盡了風頭。無論是IT設備廠商、電信運營商,還是服務提供商、內容提供商,都紛紛「找門子」與雲計算「拉關系」,大家削尖了腦袋拚命地往雲計算這艘船上擠,如果自己的產品、理念或者技術與雲計算根本沾不上邊,那簡直都羞於見人。雲計算似乎無所不能,無處不在,一時間風靡全球。國內外各大媒體更是爭先恐後地追捧雲計算的獨特魅力。
雲計算就是把數據以最廉價的成本變成財富。這就像老闆跟更秘書的關系一樣一樣的,大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。信息社會,數據量不僅在快速增長,同時技術也在不斷提高,近幾年大多數企業都因為大數據二嘗到了甜頭。在海量數據的前提下,如果提取、處理和利用數據的成本超過了數據價值本身,那麼有價值相當於沒任何價值。來自公有雲、私有雲以及混合雲之上的究極雲計算,對於降低數據提取過程中的成本,成為了最合格的秘書。
第一次收集的數據中,一般而言,90%屬於無用數據,因此需要過濾出能為企業提供經濟利益的可用數據,看有了這個十八般武藝的秘書,省了多大的事兒啊,回到正題,在大量無用數據中,重點需過濾出兩大類,一是大量存儲著的臨時信息,幾乎不存在投入必要;二是從公司防火牆外部接入到內部的網路數據,價值極低。雲計算可以提供按需擴展的計算和存儲資源,可用來過濾掉無用數據,其中公有雲是處理防火牆外部網路數據的最佳選擇。
數據分析階段,可引入公有雲和混合雲技術,此外,類似Hadoop的分布式處理軟體平台可用於數據集中處理階段。當完成數據分析後,提供分析的原始數據不需要一直保留,可以使用私有雲把分析處理結果,即可用信息導入公司內部。
4. 大數據和雲計算是什麼
大數據(big data)是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
雲計算(cloud computing)雲計算是一種按使用量付費的模式,這種模式提供可用的、便捷的、按需的網路訪問, 進入可配置的計算資源共享池(資源包括網路,伺服器,存儲,應用軟體,服務),這些資源能夠被快速提供,只需投入很少的管理工作,或與服務供應商進行很少的交互。雲是網路、互聯網的一種比喻說法。
二者:大數據需要雲計算,雲計算需要大數據
雲計算為大數據處理提供了一個很好的平台。雲計算強調的是計算,而大數據則是計算的對象。如果結合實際的應用,前者強調的是計算能力,後者看重的存儲能力。
5. 什麼叫大數據,與雲計算有何關系
如今,兩種主流技術已成為IT領域關注的焦點-大數據和雲計算。根本不同的是,大數據只涉及處理海量數據,而雲計算則涉及基礎架構。但是,大數據和雲技術提供的簡化功能是其被大量企業採用的主要原因。例如,亞馬遜的「 Elastic Map Rece」演示了如何利用Cloud Elastic Computes的功能進行大數據處理。
兩者的結合為組織帶來了有益的結果。更不用說,這兩種技術都處於發展階段,但是它們的結合在大數據分析中利用了可擴展且具有成本效益的解決方案。
那麼,我們可以說大數據與雲計算完美結合嗎?好吧,有數據點支持它。除此之外,還需要處理一些實時挑戰。
大數據與雲計算的關系
大數據和雲計算這兩種技術本身都是有價值的。 此外,許多企業的目標是將兩種技術結合起來以獲取更多的商業利益。兩種技術都旨在提高公司的收入,同時降低投資成本。盡管Cloud管理本地軟體,但大數據有助於業務決策。
讓我們從這兩種技術的基本概述開始!
大數據與雲計算
大數據處理大量的結構化,半結構化或非結構化數據,以進行存儲和處理以進行數據分析。大數據有五個方面,通過5V來描述
數量–數據量
種類–不同類型的數據
速度–系統中的數據流率
價值 –基於其中包含的信息的數據價值
准確性 –數據保密性和可用性
雲計算以按需付費的模式向用戶提供服務。雲提供商提供三種主要服務,這些服務概述如下:
基礎架構即服務(IAAS)
在這里,服務提供商將提供整個基礎架構以及與維護相關的任務。
平台即服務(PAAS)
在此服務中,Cloud提供程序提供了諸如對象存儲,運行時,排隊,資料庫等資源。但是,與配置和實現相關的任務的責任取決於使用者。
軟體即服務(SAAS)
此服務是最便捷的服務,它提供所有必要的設置和基礎結構,並為平台和基礎結構提供IaaS。
大數據與雲計算的關系模型雲計算在大數據中的作用
大數據和雲計算的關系可以根據服務類型進行分類:
IAAS在公共雲中
IaaS是一種經濟高效的解決方案,利用此雲服務,大數據服務使人們能夠訪問無限的存儲和計算能力。對於雲提供商承擔所有管理基礎硬體費用的企業而言,這是一種非常經濟高效的解決方案。
私有雲中的PAAS
PaaS供應商將大數據技術納入其提供的服務。因此,它們消除了處理管理單個軟體和硬體元素的復雜性的需求,而這在處理TB級數據時是一個真正的問題。
混合雲中的SAAS
如今,分析社交媒體數據已成為公司進行業務分析的基本參數。在這種情況下,SaaS供應商提供了進行分析的出色平台。
大數據與雲計算有何關系?
因此,從以上描述中,我們可以看到,Cloud通過可伸縮且靈活的自助服務應用程序抽象了挑戰和復雜性,從而啟用了「即服務」模式。從最終用戶提取海量數據的分布式處理時,大數據需求是相同的。
雲中的大數據分析有多個好處。
改進分析
隨著雲技術的進步,大數據分析變得更加完善,從而帶來了更好的結果。因此,公司傾向於在雲中執行大數據分析。此外,雲有助於整合來自眾多來源的數據。
簡化的基礎架構
大數據分析是基礎架構上一項艱巨的艱巨工作,因為數據量大,速度和傳統基礎架構通常無法跟上的類型。由於雲計算提供了靈活的基礎架構,我們可以根據當時的需求進行擴展,因此管理工作負載很容易。
降低成本
大數據和雲技術都通過減少所有權來為組織創造價值。雲的按用戶付費模型將CAPEX轉換為OPEX。另一方面,Apache降低了大數據的許可成本,該成本應該花費數百萬美元來構建和購買。雲使客戶無需大規模的大數據資源即可進行大數據處理。因此,大數據和雲技術都在降低企業成本並為企業帶來價值。
安全與隱私
數據安全性和隱私性是處理企業數據時的兩個主要問題。此外,當您的應用程序由於其開放的環境和有限的用戶控制安全性而託管在Cloud平台上時,這成為主要的問題。另一方面,像Hadoop這樣的大數據解決方案是一個開源應用程序,它使用了大量的第三方服務和基礎架構。因此,如今,系統集成商引入了具有彈性和可擴展性的私有雲解決方案。此外,它還利用了可擴展的分布式處理。
除此之外,雲數據是在通常稱為雲存儲伺服器的中央位置存儲和處理的。服務提供商和客戶將與之一起簽署服務水平協議(SLA),以獲得他們之間的信任。如果需要,提供商還可以利用所需的高級安全控制級別。這可確保涵蓋以下問題的雲計算中大數據的安全性:
保護大數據免受高級威脅。
雲服務提供商如何維護存儲和數據。
有一些與服務級別協議相關的規則可以保護
數據
容量
可擴展性
安全
隱私
數據存儲的可用性和數據增長
另一方面,在許多組織中,大數據分析被用來檢測和預防高級威脅和惡意黑客。
虛擬化
基礎架構在支持任何應用程序中都起著至關重要的作用。虛擬化技術是大數據的理想平台。像Hadoop這樣的虛擬化大數據應用程序具有多種優勢,這些優勢在物理基礎架構上是無法訪問的,但它簡化了大數據管理。大數據和雲計算指出了各種技術和趨勢的融合,這使IT基礎架構和相關應用程序更加動態,更具消耗性和模塊化。因此,大數據和雲計算項目嚴重依賴虛擬化
6. 大數據和雲計算的區別
1、目的不同:大數據是為了發掘信息價值,而雲計算主要是通過互聯網管理資源,提供相應的服務。
2、對象不同:大數據的對象是數據,雲計算的對象是互聯網資源以及應用等。
3、背景不同:大數據的出現在於用戶和社會各行各業所產生大的數據呈現幾何倍數的增長;雲計算的出現在於用戶服務需求的增長,以及企業處理業務的能力的提高。
4、價值不同:大數據的價值在於發掘數據的有效信息,雲計算則可以大量節約使用成本。
結構
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
以上內容參考:網路-大數據
7. 雲計算和大數據是什麼關系
大數據和雲計算在技術體系結構上,都是以分布式存儲和分布式計算為基礎,所以二者之間的聯系也比較緊密。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
從應用角度來看,大數據是雲計算的應用案例之一,雲計算是大數據的實現工具之一。
雲計算的特點
1、虛擬化技術。
必須強調的是,虛擬化突破了時間、空間的界限,是雲計算最為顯著的特點,虛擬化技術包括應用虛擬和資源虛擬兩種。眾所周知,物理平台與應用部署的環境在空間上是沒有任何聯系的,正是通過虛擬平台對相應終端操作完成數據備份、遷移和擴展等。
2、動態可擴展。
雲計算具有高效的運算能力,在原有伺服器基礎上增加雲計算功能能夠使計算速度迅速提高,最終實現動態擴展虛擬化的層次達到對應用進行擴展的目的。
3、按需部署。
計算機包含了許多應用、程序軟體等,不同的應用對應的數據資源庫不同,所以用戶運行不同的應用需要較強的計算能力對資源進行部署,而雲計算平台能夠根據用戶的需求快速配備計算能力及資源。
4、靈活性高。
目前市場上大多數IT資源、軟、硬體都支持虛擬化,比如存儲網路、操作系統和開發軟、硬體等。虛擬化要素統一放在雲系統資源虛擬池當中進行管理,可見雲計算的兼容性非常強,不僅可以兼容低配置機器、不同廠商的硬體產品,還能夠外設獲得更高性能計算。
8. 簡述什麼是大數據,雲計算,以及它們的應用實例
大數據:是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
雲計算:是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。雲計算最初的目標是對資源的管理,管理的主要是計算,存儲,網路資源。
海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。說到大數據,就不得不講雲計算。這些數據是怎麼計算,怎麼處理的,就和雲計算分不開家。雲計算是提取大數據的前提,強大的雲計算能力,對於降低數據提取過程中的成本不可或缺。雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。