⑴ 想自學數據挖掘需要什麼基礎
我先介紹下我自己,我不是搞純數學專業的,我是REDHAT LINUX「紅帽子」公司的資深系統級工程師。我也做過數據挖掘方面的工作!為一個在甲骨文的朋友搞一些數據方面的工作。所以為了應付我也大概突擊了下,才發現這門學科有竅門!
首先,我要說的是我覺得你是一名在校大學生!Data Mining不是你想的那麼簡單,他不單單和數學有關系,還包括了計算機領域的諸多學科。還有社會工程學、邏輯學等文科和理科的交叉學科!他是一門龐大的體系。你要是真想學我只能給你指條比較快的成才之路,後面的東西自己慢慢學都趕趟!慢慢充實自己!大學四年好好利用!學無止境!
既然是數據分析那你的高等數學必須要過硬,別著急這只是你的其他學科的基礎課。其次是概率與統計,這才是正科,大學那點玩意就是糊弄人的,你要多看這方面的書。這個一定要學好!線性必須要會要精通。因為數據劃分是數據挖掘里最重要的一個環節。這個就是線性范疇里的了。也要精通,學會線性分析你就發現你就學會了很多。數學有這三個底子就可以了。數學分析不要看了。因為那隻是高數的延伸!
計算機你一定要懂。資料庫你必須得學會。三大數據庫ORACLE.SQL.MYSQL原理基本類似觸類旁通!
還有就是培養你的思維,盡量縝密敏捷。這樣才可以發現數據中的不同!因為有的數據挖掘是計算機處理的。有的則是紙面上的。所以必須學會記錄
好了,就先這么多了。你學會了這幾個就是你進軍下一步的基礎,這幾個就夠你學一陣子的了。
祝你好運哥們!
⑵ 學習數據挖掘需要那些基礎知識
學習數據挖掘需要學習編程語言(Python、C、C++、Java、Delphi等),數據結構和演算法,操作系統和網路編程。
數據挖掘涉及的內容比較泛,機器學習、數據挖掘、人工智慧,這些知識大多是相通的。編程語言主要是C語言、C++和Java,。我首先這里可以學習C語言聖經《C程序設計語言》以及《C++ Primer》,數據結構和演算法推薦《數據結構與演算法分析(C語言描述)》。最好有機器學習,涉及到數據挖掘,自然語言處理和深度學習。數據挖掘主要是搜索排序,反作弊,個性化推薦,信用評價等;需要理解資料庫原理,能夠熟練操作至少一種資料庫(Mysql、SQL、DB2、Oracle等),明白MapRece的原理操作以及熟練使用Hadoop系列工具。
如果想提升關於數據挖掘方面的能力,這里推薦CDA數據分析師的相關課程,教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;課程中安排了Sklearn/LightGBM、Tensorflow/PyTorch、Transformer等工具的應用實現,並根據輸出的結果分析業務需求,為進行合理、有效的策略優化提供數據支撐點擊預約免費試聽課。
⑶ 學會用聚類演算法進行數據挖掘需要怎樣的數學基礎
會用聚類演算法進行數據挖掘需要線性代數, 變分演算,距離度量,距離矩陣等的數學知識基礎。
在數據科學中,我們可以通過聚類分析觀察使用聚類演算法後獲得一些有價值的信息,其中會涉及許多數學理論與實際計算。
主要有以下幾類演算法:
K-Means(k-平均或k-均值)是普遍知名度最高的一種聚類演算法,在許多有關數據科學和機器學習的課程中經常出現。
Mean shift演算法,又稱均值漂移演算法,這是一種基於核密度估計的爬山演算法,適用於聚類、圖像分割、跟蹤等
DBSCAN是一種基於密度的聚類演算法,它不需要輸入要劃分的聚類個數,對聚類的形狀沒有偏倚。
層次聚類會將每個數據點視為單個聚類,然後連續合並成對的聚類,直到所有聚類合並成包含所有數據點的單個聚類。
關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」。點擊預約免費試聽課。
⑷ 數據挖掘需要哪些基礎
人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術等。
數據挖掘從資料庫的大量數據中揭示出隱含的、先前未知的並有潛在價值的信息,數據挖掘主要基於人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術等,高度自動化地分析企業的數據;
作出歸納性的推理,從中挖掘出潛在的模式,幫助決策者調整市場策略,減少風險,作出正確的決策。
⑸ 大數據挖掘需要學習哪些技術大數據的工作
首先
我由各種編程語言的背景——matlab,R,java,C/C++,python,網路編程等
我又一定的數學基礎——高數,線代,概率論,統計學等
我又一定的演算法基礎——經典演算法,神經網路,部分預測演算法,群智能演算法等
但這些目前來講都不那麼重要,但慢慢要用到
Step 1:大數據理論,方法和技術
大數據理論——啥都不說,人家問你什麼是大數據時,你能夠講到別人知道什麼是大數據
大數據方法——然後別人問你,那怎麼實現呢?嗯,繼續講:說的是方法(就好像歸並排序演算法:分,並)。到目前外行人理解無障礙
大數據技術——多嘴的人繼續問:用的技術。
這階段只是基礎,不涉及任何技術細節,慢慢看慢慢總結,積累對「大數據」這個詞的理解。
Step 2:大數據思維
Bang~這是繼Step 1量變發展而來的質變:學了那麼久「大數據」,把你扔到製造業,你怎麼辦?
我想,這就是「學泛」的作用吧,並不是學到什麼具體東西,而是學到了對待事物的思維。
----------------------------------------------------------------------
以下階段我還沒開始=_=,不好誤導大家
Step 3:大數據技術基礎
Step 4:大數據技術進階
Step 5:打實戰
Step 6:大融合
⑹ 怎麼自學成為一名數據挖掘分析師
第一,打好基礎。如果你把
數據挖掘
比作一個游戲的話,那麼你也需要首先從好好練級開始。也就是說,你最先做的事情就是先練級殺小鬼。熟悉基本知識,比如統計學的基礎知識,還有
線性代數
,微積分的基礎知識。
第二,把握好中級內容。比如多元
統計方法
等等
第三,選好武器,SPSS
CLENTINE
還有SAS什麼的,你都要學會。
最後,多走動,多看看,看看高收如何做的,你慢慢就成為高手了:)
⑺ 零基礎學數據挖掘應該怎麼入門
初級數據分析師需要掌握的技能有:統計學基礎、Python語言、網頁分析、資料庫技術、常用模型理論、數據分析入門並不難,難的是之後的積累才是重點,如何在實際工作、項目中真正發揮數據分析的作用,產生價值。
數據分析師要具備六種核心能力:
1.基礎科學的能力
可以說,在數據決策的時代,數據分析幾乎滲透到企業的每個業務環節中。掌握統計學,才能知道每一種數據分析的模型,什麼樣的輸入,什麼樣的輸出,有什麼樣的作用。
2.使用分析工具的能力
任何數據分析師從事業務方向的工作都必須會統計學,統計學的學習最好輔助SPSS或其他SAS來學,做到數據分析基本功扎實,兼顧實戰性。學習中,要掌握SQL的基礎語法、中級語法和常用函數,結合關系資料庫系統來學習SQL語句。
3.掌握編程語言的能力
Python主要掌握基礎語法,pandas操作、numpy操作、sklearn建模,學會用python編寫網路爬蟲爬取數據等等。
4.邏輯思維的能力
邏輯思維對於數據分析來說特別重要。反映商業數據里,大家可以理解為去搭建商業框架或者說是故事線,有邏輯的推進,結果才會另人信服。
5.數據可視化的能力
有了Python的基礎,就可以學習數據可視化了。運營和產品都需要學習可視化,Python中可視化的工具有matplotlib,seaborn,ploltly;
6.模型評估的能力
Model建模,知道模型建好後應該怎樣去評估,掌握怎樣用一些定量的指標,數據、數值來衡量模型建好後到底有多准確,或者說到底有多錯誤。模型評估的指標或計算方式選擇正確與否,能夠直接影響到整個項目獲模型是否有效。
想要了解更多關於數據挖掘的問題可以到CDA認證中心咨詢一下,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱,具體指在互聯網、金融、咨詢、電信、零售、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據人才。
⑻ 學大數據需要什麼基礎
說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。
⑼ 數據分析和數據挖掘學要哪些專業知識
在學數據分析之前,我們首先要明確知識架構。一般來說,數據分析師需要的技能就是這些:需要掌握SQL資料庫的基本操作,同時掌握基本的數據管理。會用Excel和SQL做基本的數據提取、分析和展示;會用腳本語言進行數據分析,Python或者R;有獲取外部數據的能力加分,比如爬蟲;會基本的數據可視化技能,能撰寫數據報告;熟悉常用的數據挖掘演算法(數據分析演算法包括回歸分析、決策樹、分類、聚類方法等)。這些技能掌握了,就能夠入門數據分析師了。
數據挖掘需要的技能:1.需要理解主流機器學習演算法的原理和應用。2.需要熟悉至少一門編程語言如(Python、C、C++、Java、Delphi等)。3.需要理解資料庫原理,能夠熟練操作至少一種資料庫(Mysql、SQL、DB2、Oracle等),能夠明白MapRece的原理操作以及熟練使用Hadoop系列工具更好。
更多數據挖掘的信息,推薦咨詢CDA數據分析師的課程。CDA數據分析師認證的課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。點擊預約免費試聽課。
⑽ 初學者如何學習數據倉庫與數據挖掘技術
初學者短期學會數據倉庫與數據挖掘技術比較不現實,不過學術性的隨便做個主題應該還不是很難。要想深入學習,建議報培訓機構。
1.數據倉庫,是為企業所有級別的決策制定過程,提供所有類型數據支持的戰略集合。它是單個數據存儲,出於分析性報告和決策支持目的而創建。 為需要業務智能的企業,提供指導業務流程改進、監視時間、成本、質量以及控制。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性(屬於Association rule learning)的信息的過程。數據挖掘通常與計算機科學有關,所以學好數據倉庫與數據挖掘技術還是有必要的。
2.數據挖掘(英語:Data mining),又譯為資料探勘、數據采礦。它是資料庫知識發現。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。
如果說想要了解數據倉庫和數據挖掘技術,這里推薦CDA數據分析師的相關課程。CDA數據分析師覆蓋了國內企業招聘數據分析師所要求的所有技能,包括概率統計知識、軟體應用、數據挖掘、資料庫、數據報告、業務應用等。CDA數據分析師分為LEVELⅠ、Ⅱ、Ⅲ三個等級,成為一名合格的CDA數據分析師能夠勝任企業不同層次的數據分析工作。點擊預約免費試聽課。