導航:首頁 > 數據處理 > 大數據主要來源於什麼

大數據主要來源於什麼

發布時間:2022-04-22 13:20:40

1. 大數據來源於什麼

  1. 早在1980年,著名未來學家托夫勒在其所著的《第三次浪潮》中就熱情地將「大數據」稱頌為「第三次浪潮的華彩樂章」。2008年9月《自然》雜志推出了名為「大數據」的封面專欄。從2009年開始「大數據」才成為互聯網技術行業中的熱門詞彙。

  2. 到了2011年6月,麥肯錫公司看到了各種網路平台記錄的個人海量信息具備潛在的商業價值,於是投入大量人力物力進行調研,並發布了關於「大數據」的報告,該報告對「大數據」的影響、關鍵技術和應用領域等都進行了詳盡的分析。麥肯錫的報告得到了金融界的高度重視,而後逐漸受到了各行各業關注。

2. 大數據包括一些什麼

大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 [1] 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
大數據包括一些什麼?
首先,數據收集
ETL工具負責從分布式異構數據源(如關系數據和平面數據文件)中提取數據到臨時中間層進行清理,轉換,集成,最後載入到數據倉庫或數據集市成為在線分析過程。數據挖掘的基礎。
第二,數據訪問
關系資料庫,NOSQL,SQL等
第三,基礎設施
雲存儲,分布式文件存儲等。
四是數據處理
自然語言處理(NLP)是一門研究人與計算機之間語言問題的學科。處理自然語言的關鍵是讓計算機「理解」自然語言,因此自然語言處理也稱為自然語言理解(NLU),也稱為計算語言學。一方面,它是語言信息的處理。另一方面,一個分支是人工智慧(AI)的核心主題之一。
五,統計分析
假設檢驗,顯著性檢驗,差異分析,相關分析,T檢驗,方差分析,卡方分析,偏相關分析,距離分析,回歸分析,簡單回歸分析,多元回歸分析,逐步回歸,回歸預測和殘差分析嶺回歸,邏輯回歸分析,曲線估計,因子分析,聚類分析,主成分分析,因子分析,快速聚類和聚類,判別分析,對應分析,多元對應分析(最佳尺度分析),Bootstrap技術等。
六,數據挖掘
分類,估計,預測,親和力分組或關聯規則,聚類,描述和可視化,Deion和可視化,復雜數據類型挖掘(文本),Web,圖形圖像,視頻,音頻等)。
第七,模型預測
預測模型,機器學習,建模模擬。

3. 人人都在說大數據,那大數據概念是怎麼產生的

概念產生:

「大數據」的名稱來自於未來學家托夫勒所著的《第三次浪潮》 盡管「大數據」這個詞直到最近才受到人們的高度關注,但早在1980年,著名未來學家托夫勒在其所著的《第三次浪潮》中就熱情地將「大數據」稱頌為「第三次浪潮的華彩樂章」。《自然》雜志在2008年9月推出了名為「大數據」的封面專欄。從2009年開始「大數據」才成為互聯網技術行業中的熱門詞彙。

4. 什麼是大數據,通俗的講

大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。

大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性

隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。

很多情況下大數據來源於生活。
比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。

大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。

5. 大數據到底是啥在哪裡(通俗解釋)

大數據是什麼?在很多人的眼裡大數據可能是一個很模糊的概念,
但是,在日常生活中大數據有離我們很近,我們無時無刻不再享受著大數據所給我們帶來的便利,個性化,人性化。
全面的了解大數據我們應該從四個方面簡單了解。
定義,結構特點,
我們身邊有哪些大數據,大數據帶來了什麼,
這四個方面了解。

那麼「大數據」到底是什麼呢?

在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB,1PB=1024GB才足以稱為大數據。
其次,大數據具有什麼樣的特點和結構呢?

大數據從整體上看分為四個特點,第一,大量。

衡量單位PB級別,存儲內容多。

第二,高速。
大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。

第二,多樣。

數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。

第三,價值。

大數據不僅僅擁有本身的信息價值,還擁有商業價值。
大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。

那我們身邊有哪些東西是大數據呢?

在生產生活中常見的有電信數據:通話數據、簡訊數據、手機瀏覽數據。銀行數據,微信聊天數據等。

6. 大數據的中的數據是從哪裡來的

大數據應用中的關鍵點有三個,首要的就是大數據的數據來源,我們在分析大數據的時候需要重視大數據中的數據來源,只有這樣我們才能夠做好大數據的具體分析內容。那麼大家知不知道大數據的數據來源都是通過什麼渠道獲得的?下面就由小編為大家解答一下這個問題。
對於數據的來源很多人認為是互聯網和物聯網產生的,其實這句話是對的,這是因為互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。而物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據的數據來源,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,是我們常用的數據來源。
而數據的來源是我們評價大數據應用的第一個關注點。首先需要我們看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是好數據還是壞數據,能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,只有我們找到了好的數據來源,我們就能夠做好大數據的工作。這句需要我們去尋找數據比較密集的領域。
一般來說,我們獲取數據的時候需要數據密集的行業中挖掘數據,主要就是金融、電信、服務行業等等,而金融是一個特別重要的數據密集領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。
我們在這篇文章中為大家介紹了大數據的數據來源以及數據密集的領域,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。

7. 大數據的起源是哪裡

大數據起源於美國,大約從2009年開始,大數據成為互聯網信息技術行業的流行詞彙,事實上,大數據產生是指建立在對互聯網、物聯網、雲計算等渠道廣泛、大量數據資源收集基礎上的數據存儲、價值提煉、智能處理和分發的信息服務業,大數據企業大多致力於讓所有用戶幾乎能夠從任何數據中獲的可轉化為業務執行的洞察力,包括之前隱藏在非結構化數據化的洞察力。

8. 大數據的起源是金融還是公共管理,互聯網

大數據的起源是互聯網。大數據目的是為了更好了解客戶喜好,它將海量碎片化的信息數據進行篩選、分析,並最終歸納、整理出企業需要的咨訊。而這些海量的信息則來源於互聯網。

資料擴展

大數據主要的幾個應用領域及發展前景

1.電商行業是最早利用大數據進行精準營銷,它根據客戶的消費習慣提前生產資料、物流管理等,有利於精細社會大生產。

2.大數據在金融行業應用范圍是比較廣的,它更多應用於交易,現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。

3.大數據還被應用改善我們日常生活的城市。例如基於城市實時交通信息、利用社交網路和天氣數據來優化最新的交通情況。目前很多城市都在進行大數據的分析和試點。

4.基因技術是人類未來挑戰疾病的重要武器,科學家可以藉助大數據技術的應用,從而也會加快自身基因和其它動物基因的研究過程,這將是人類未來戰勝疾病的重要武器之一,未來生物基因技術不但能夠改良農作物,還能利用基因技術培養人類器官和消滅害蟲等。

9. 大數據主要來源於什麼

來源:從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

(9)大數據主要來源於什麼擴展閱讀:

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

10. 大數據的三大主要來源

1、開源數據
開源數據包括了互聯網數據、移動數據網數據,互聯網平台和移動互聯網平台通過采、編、發或者通過用戶互動產生的數據,公之於眾,供網民或用戶訪問、瀏覽。
2、業務數據

業務數據產生於各單位的信息化系統中,尤其是內部的信息化系統,我們統稱為業務系統。在目前的單位業務系統中,存在於單位的OA系統或者CRM之中,其中蘊含了大量的工作數據和交易數據,以及客戶管理數據,包括交易數據、流水數據、記帳數據、借款數據、貸款數據等業務數據,這些數據構建了每天的系統日誌,同時又是帳戶余額、信用額度、購買能力等的有力補充,這些數據不僅對生產系統起到計費支撐作用,同時也是用戶(銀行客戶、電力客戶、擔保公司等)進行相關決策的重要基礎,所以目前很多單位需要對這些數據進行查詢統計和分析。
3、線路數據
無論是互聯網還是各種內網,任何的網路行為都需要經過「線路」進行鏈接和交互,而在這條線路上,要經過無數的路由交換得以完成,這條線路在完成鏈接的同時,也記錄與存貯了大量的數據,我們統稱為線路數據。

閱讀全文

與大數據主要來源於什麼相關的資料

熱點內容
查賬號數據用什麼 瀏覽:84
lg中國有多少市場 瀏覽:769
材料實驗數據分析用哪些軟體 瀏覽:83
民生更新身份證信息要多久 瀏覽:868
如何在資料庫查詢一條記錄 瀏覽:967
dnf練技術拿什麼劍 瀏覽:211
數據介面工具哪個好 瀏覽:668
周巷批發市場在哪裡 瀏覽:957
汽油機增壓的技術難點有哪些 瀏覽:983
三和張產品怎麼樣 瀏覽:423
世界填海技術哪裡最高 瀏覽:719
新三板創新層股票怎麼交易 瀏覽:174
如何分析股票歷史交易記錄 瀏覽:424
德州哪裡有貨架批發市場 瀏覽:811
養老信息怎麼就查不出來 瀏覽:122
大數據是什麼專業的 瀏覽:822
如何設置表1和表2數據聯動 瀏覽:957
碳交易什麼時候落地 瀏覽:374
聯通代理商工資怎麼查詢 瀏覽:287
交易員止損率是多少 瀏覽:824