導航:首頁 > 數據處理 > 如何爬取天貓資料庫

如何爬取天貓資料庫

發布時間:2025-03-16 23:37:45

① BAT三巨頭開始挖掘大數據

BAT三巨頭開始挖掘大數據
阿里巴巴CTO即阿里雲負責人王堅博士說過一句話:雲計算和大數據,你們都理解錯了。
實際上,對於大數據究竟是什麼業界並無共識。大數據並不是什麼新鮮事物。信息革命帶來的除了信息的更高效地生產、流通和消費外,還帶來數據的爆炸式增長。「引爆點」到來之後,人們發現原有的零散的對數據的利用造成了巨大的浪費。移動互聯網浪潮下,數據產生速度前所未有地加快。人類達成共識開始系統性地對數據進行挖掘。這是大數據的初心。數據積累的同時,數據挖掘需要的計算理論、實時的數據收集和流通通道、數據挖掘過程需要使用的軟硬體環境都在成熟。
概念、模式、理論很重要,但在最具實干精神的互聯網領域,行動才是最好的答案。國內互聯網三巨頭BAT坐擁數據金礦,已陸續踏上了大數據掘金之路。
BAT都是大礦主,但礦山性質不同
數據如同蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
網路擁有兩種類型的大數據:用戶搜索表徵的需求數據;爬蟲和阿拉丁獲取的公共web數據。
阿里巴巴擁有交易數據和信用數據。這兩種數據更容易變現,挖掘出商業價值。除此之外阿里巴巴還通過投資等方式掌握了部分社交數據、移動數據。如微博和高德。
騰訊擁有用戶關系數據和基於此產生的社交數據。這些數據可以分析人們的生活和行為,從裡面挖掘出政治、社會、文化、商業、健康等領域的信息,甚至預測未來。
下面,就將三家公司的情況一一掃描與分析。
一、網路:含著數據出生且擁有挖掘技術,研究和實用結合
搜索巨頭網路圍繞數據而生。它對網頁數據的爬取、網頁內容的組織和解析,通過語義分析對搜索需求的精準理解進而從海量數據中找准結果,以及精準的搜索引擎關鍵字廣告,實質上就是一個數據的獲取、組織、分析和挖掘的過程。
除了網頁外,網路還通過阿拉丁計劃吸收第三方數據,通過業務手段與葯監局等部門合作拿到封閉的數據。但是,盡管網路擁有核心技術和數據礦山,卻還沒有發揮出最大潛力。網路指數、網路統計等產品算是對數據挖掘的一些初級應用,與Google相比,網路在社交數據、實時數據的收集和由數據流通到數據挖掘轉換上有很大潛力,還有很多事情要做。
2月底在北京出差時,寫了一篇《搜索引擎的大數據時代》發在虎嗅。創造了零回復的記錄。盡管如此,仍然沒有打消我對搜索引擎在大數據時代深層次變革的思考。 搜索引擎在大數據時代面臨的挑戰有:更多的暗網數據;更多的WEB化但是沒有結構化的數據;更多的WEB化、結構化但是封閉的數據。這幾個挑戰使得數據正在遠離傳統搜索引擎。不過,搜索引擎在大數據上畢竟具備技術沉澱以及優勢。
接下來,網路會向企業提供更多的數據和數據服務。前期網路與寶潔、平安等公司合作,為其提供消費者行為分析和挖掘服務,通過數據結論指導企業推出產品,是一種典型的基於大數據的C2B模式。與此類似的還有Netflix的《紙牌屋》美劇,該劇的男主角凱文·史派西和導演大衛·芬奇都是通過對網路數據挖掘之後,根據受歡迎情況選中的。
網路還會利用大數據完成移動互聯網進化。核心攻關技術便是深度學習。基於大數據的機器學習將改善多媒體搜索效果和智能搜索,如語音搜索、視覺搜索和自然語言搜索。這將催生移動互聯網的革命性產品的出現。盡管網路已經出發,其在大數據上可做的事情還有很多。
在數據收集方面,網路需要聚合更多高價值的交易、社交和實時數據。例如加強自己貼吧知道的社交能力、盡快讓地圖服務與O2O結合進而掌握交易數據,以及推進移動App、穿戴式設備等數據收集系統。
在數據處理技術上,網路成立深度學習研究院加強自己在人工智慧領域的探索,在多媒體和中文自然語言處理領域已經有一些進展;雲存儲、雲計算的基礎設施建設也在逐步完善。但深度學習仍然是一個巨大的挑戰,網路等探索者還有很多待解問題,如:無監督式學習、立體圖像識別。
在數據變現方面,網路需將數據挖掘能力、數據內容聚合和提取等形成標准化的服務和產品,進而開拓大數據領域的企業和開發者市場。而不僅僅是頗為個性化、定製化地為大型企業提供解決。
網路的優勢體現在海量的數據、沉澱十多年的用戶行為數據、自然語言處理能力和深度學習領域的前沿研究。在技術人才方面網路是聚集國內最多大數據相關領域頂尖人才的公司。聽說網路前段時間花五千萬挖了數據挖掘、自然語言處理、深度學習領域的十來位大牛,包括一些學者和教授。例如Facebook科學家徐偉。
在挖人上,捨得花錢不夠,還得用心。對於真正的大牛來說,錢只是一個影響因素。能否實現自己的夢想,公司的資源能否幫助自己的研究至關重要。徐偉在回國前就曾問過其他從矽谷回國工程師的意見,得到答案是積極的,最終促成他作出決定。
總體來看,網路擁有大數據也具備大數據挖掘的能力,並且正在進行積極地准備和探索。在加強面向未來的研究和人才布局的同時,也注重實用性的技術產出。
二、騰訊:數據為產品所用,自產自銷
微創新提出者金錯刀有個關於騰訊的故事。 1999年騰訊公司剛剛成立不久,天使投資人劉曉松決定向其注資的一個主要原因就是因為他發現,「當時雖然他們的公司還很小,但已經有用戶運營的理念,後台對於用戶的每一個動作都有記錄和分析。」而另一個投資人卻因為馬化騰在公司很小時就花錢在數據上表示不滿。此後騰訊的產品生產及運營、騰訊游戲的崛起都離不開對數據的重視。
騰訊擁有社交大數據,在企鵝帝國完成數據的製造、流通、消費和挖掘。 騰訊大數據目前釋放價值更多是改進產品。據騰訊Q1財報,增值服務占總收入的78.7%;電子商務業務佔14.1%;網路廣告收入佔6.3%。從廣告收入比例可以看出騰訊的大數據在精準營銷領域暫時還未大量釋放出價值。與其產品線對應的GMAIL、Google+的Google以及社交巨頭Facebook則通過廣告賺得盆滿缽滿。
在筆者看來,騰訊的思路主要是補齊產品,注重QZONE、微信、電商等產品的後端數據打通。例如最近騰訊微博利用「大數據技術」實現好友關系自動分組、低質量信息自動過濾、優質信息分類閱讀等智能化功能。明顯的用數據改進產品的思路。 那麼如果騰訊要深入大數據挖掘缺少什麼呢?筆者認為其只需馬化騰「摁下啟動按鈕」。數據已經准備好了,就差模式,也就是找到需求或者能更深層次驅動大數據利用的產品,而不是用大數據改進自己的產品。騰訊還在觀望,等其他人去試錯驗證出一套模式或者產品後,自己可以「站在巨人肩上」。這是騰訊的典型思維。
在人才方面,騰訊很早便開始重金挖人。尤其是2010年在Google宣布退出中國後,Google圖片搜索創始人朱會燦、Google中國工程研究院副院長顏偉鵬、Google中日韓文搜索演算法的主要設計者,《浪潮之巔》及《數學之美》作者吳軍相繼加入騰訊。搜搜花了很多錢,但被認定為一款無法承載騰訊重託的產品,最後這些大牛都走了。大都回Google了。
騰訊在大數據領域也缺少技術帶頭人。其對公關也不重視。技術大牛很少出來做報告,更不會向網路、阿里那樣主動包裝宣傳技術大牛。其技術雖然低調,但執行力很強。據騰訊的程序員朋友說封閉開發、集體加班是常有的事情。但配套的重金激勵也能跟上。重金之下必有勇夫、騰訊用制度保障技術產出。另外騰訊在高校合作領先一步,在2010年便與清華大學合作成立了清華騰訊聯合實驗室。這么看騰訊的技術人才這塊似乎有短板。會不會到時候馬化騰按下啟動按鈕,發現沒數據挖掘能力呢?不會,騰訊搞不定數據挖掘,到時候依然可以挖到大牛,甚至讀論文來搞定這事兒。數據挖掘已較為成熟。數據挖掘實際是資料庫、統計學、機器學習三個領域的融合。在學術界已經發展多年。不過自然語言識別和深度學習等方面要趕上網路,就難了。除非將網路的數據和眾大牛一起倒騰過來。
總體來看,騰訊目前的大數據策略是先將產品補全,產品後台數據打通,形成穩定生態圈。本階段先利用大數據挖掘改進自己的產品。後期有成熟的模式合適的產品,則利用自家的社交及關系數據時,開展對大數據的進一步挖掘。
三、阿里巴巴:坐擁金數據,嘗試做面向未來的數據集市
阿里巴巴B2B出身,在外貿蓬勃的大環境下,依靠服務中小企業發家。淘寶、支付寶等toC的產品出生前,阿里並不依賴也不擅長技術。業界普遍認為阿里沒有技術基因。直到淘寶、支付寶以及天貓三個產品後,對海量用戶大並發量交易、海量貨架數據的管理、安全性等方面的嚴苛要求,阿里完成進化,在電商技術上取得不菲的成績。在一段時期阿里仍然浪費了手裡掌握的大量數據。這些數據還是「最值錢」的金數據。
數據挖掘無非是從原始數據提取價值。阿里現有的數據產品例如數據魔方、量詞統計、推薦系統、排行榜以及時光倒流相對來說是比較簡單的BI(商業智能),沒到大數據的階段。「大數據」浪潮襲來,阿里提出「數據、金融和平台」戰略。前所未有地重視起對數據的收集、挖掘和共享。馬雲在「退居」前動不動都對外提「數據」。有位阿里朋友甚至開玩笑說,馬雲英文名可以從Jack Ma改為Data Ma。阿里現CEO陸兆禧曾做過CDO,首席數據官。為了用數據來驅動阿里電商帝國,阿里還成立了橫跨各大事業部的「數據委員會」。
阿里的各項投資案也顯示其整合、利用和完善數據的野心:新浪微博的社交及媒體數據、高德的地圖數據和線下數據以及友盟的移動應用數據,都是其數據及平台戰略的一部分。數據戰略正在首席人工智慧官(CBO)車品覺領頭下逐步落地,王堅的雲為其提供基礎設施、基礎技術支撐。
就在馬雲退休之後,王堅對外透露其跟馬雲開玩笑說的一句話:阿里巴巴對數據的理解深度,不會超過蘇寧對電子商務的理解。估計馬雲不一定認同他這話。馬雲對大數據已經有著自己的理解和考量。馬雲曾經說過其對大數據的思考。大致意思是:現在從信息時代進入數據時代了。區別是信息時代更多的是精英玩的游戲。我比別人聰明,我能提取出信息出來;數據時代,別人比我聰明,將數據開放給更聰明的人處理,數據即資產,分析即服務。
計算機發展的過程是從象牙塔、到平民到草根。大數據也是這樣,一開始在象牙塔階段,少數精英公司才能玩;但到後面只要有數據就有價值。數據也有所有權,產生數據、流通數據、挖掘數據的都會獲得相應的價值。而阿里擅長的便是「建立市場」,建立一個數據交易市場。屆時任何個人和企業都可以將數據和挖掘服務拿上去,交易。初期阿里會將自己珍藏的電商和信用數據逐步放到上面。 有數據的人,拿上去賣,或者讓別人分析,分析即服務。沒有數據的人,即可以去買,也可以去幫別人挖掘,做礦工。
阿里並不是技術驅動,而是業務驅動的。因此在技術層面我們看到,基於前面提到的阿里大數據思路,其技術重心主要在系統層面。阿里擁有LVS(Linux Virtual Server,Linux虛擬伺服器)開源軟體創始人章文嵩,Linux Kernal、文件系統、大牛DBA等領域的大牛。從人才布局可以看到阿里擅長的技術領域,體現在對於並發訪問、電信級別的電商業務的支撐方面的得心應手。在去年雙十一期間,支撐了單日過億的訂單量。鐵道部奇葩網12306在日均40萬時已經不行了。
總體來看,阿里更多是在搭建數據的流通、收集和分享的底層架構。自己並不擅長似乎也不會著重來做數據挖掘的活兒。而是將自己擅長的「交易」生意擴展到數據。讓天下沒有難做的「數據生意」。
總結一下
移動互聯網浪潮下,現實世界正在加速數字化,每個人,每個物體、每件事情、每一個時間節點,都在向網上映射。空間和時間兩個維度的聯網,使得數字世界正在接近一步步模擬現實世界。歷史、現在和未來都會映射到網上。對大數據的挖掘正是對世界的二次發現和感知。BAT三巨頭已經出發。

② 大數據如何獲得如何統計分析

大數據時代,用數據做出理性分析顯然更為有力。做數據分析前,能夠找到合適的的數據源是一件非常重要的事情,獲取數據的方式有很多種,不必局限。下面將從公開的數據集、爬蟲、數據採集工具、付費API等等介紹。給大家推薦一些能夠用得上的數據獲取方式,後續也會不斷補充、更新。
一、公開資料庫
1.常用數據公開網站
UCI:經典的機器學習、數據挖掘數據集,包含分類、聚類、回歸等問題下的多個數據集。很經典也比較古老,但依然活躍在科研學者的視線中。
國家數據:數據來源中華人民共和國國家統計局,包含了我國經濟民生等多個方面的數據,並且在月度、季度、年度都有覆蓋,全面又權威。
CEIC:最完整的一套超過128個國家的經濟數據,能夠精確查找GDP、CPI、進口、出口、外資直接投資、零售、銷售以及國際利率等深度數據。其中的「中國經濟資料庫」收編了300,000多條時間序列數據,數據內容涵蓋宏觀經濟數據、行業經濟數據和地區經濟數據。
萬得:簡要介紹:被譽為中國的Bloomberg,在金融業有著全面的數據覆蓋,金融數據的類目更新非常快,據說很受國內的商業分析者和投資人的親睞。
搜數網:已載入到搜數網站的統計資料達到7,874本,涵蓋1,761,009張統計表格和364,580,479個統計數據,匯集了中國資訊行自92年以來收集的所有統計和調查數據,並提供多樣化的搜索功能。
中國統計信息網:國家統計局的官方網站,匯集了海量的全國各級政府各年度的國民經濟和社會發展統計信息,建立了以統計公報為主,統計年鑒、階段發展數據、統計分析、經濟新聞、主要統計指標排行等。
亞馬遜:來自亞馬遜的跨科學雲數據平台,包含化學、生物、經濟等多個領域的數據集。
figshare:研究成果共享平台,在這里可以找到來自世界的大牛們的研究成果分享,獲取其中的研究數據。
github:一個非常全面的數據獲取渠道,包含各個細分領域的資料庫資源,自然科學和社會科學的覆蓋都很全面,適合做研究和數據分析的人員。
2.政府開放數據
北京市政務數據資源網:包含競技、交通、醫療、天氣等數據。
深圳市政府數據開放平台:交通、文娛、就業、基礎設施等數據。
上海市政務數據服務網:覆蓋經濟建設、文化科技、信用服務、交通出行等12個重點領域數據。
貴州省政府數據開放平台:貴州省在政務數據開放方面做的確實不錯。
http://Data.gov:美國政府開放數據,包含氣候、教育、能源金融等各領域數據。
3.數據競賽網站
競賽的數據集通常干凈且科研究性非常高。
DataCastle:專業的數據科學競賽平台。
Kaggle:全球最大的數據競賽平台。
天池:阿里旗下數據科學競賽平台。
Datafountain:CCF制定大數據競賽平台。
二、利用爬蟲可以獲得有價值數據
這里給出了一些網站平台,我們可以使用爬蟲爬取網站上的數據,某些網站上也給出獲取數據的API介面,但需要付費。
1.財經數據
(1)新浪財經:免費提供介面,這篇博客教授了如何在新浪財經上獲取獲取歷史和實時股票數據。
(2)東方財富網:可以查看財務指標或者根據財務指標選股。
(3)中財網:提供各類財經數據。
(4)黃金頭條:各種財經資訊。
(5)StockQ:國際股市指數行情。
(6)Quandl:金融數據界的維基網路。
(7)Investing:投資數據。
(8)整合的96個股票API合集。
(9)Market Data Feed and API:提供大量數據,付費,有試用期。
2.網貸數據
(1)網貸之家:包含各大網貸平台不同時間段的放貸數據。
(2)零壹數據:各大平台的放貸數據。
(4)網貸天眼:網貸平台、行業數據。
(5)76676互聯網金融門戶:網貸、P2P、理財等互金數據。
3.公司年報
(1)巨潮資訊:各種股市咨詢,公司股票、財務信息。
(2)http://SEC.gov:美國證券交易數據
(3)HKEx news披露易:年度業績報告和年報。
4.創投數據
(1)36氪:最新的投資資訊。
(2)投資潮:投資資訊、上市公司信息。
(3)IT桔子:各種創投數據。
5.社交平台
(1)新浪微博:評論、輿情數據,社交關系數據。
(2)Twitter:輿情數據,社交關系數據。
(3)知乎:優質問答、用戶數據。
(4)微信公眾號:公眾號運營數據。
(5)網路貼吧:輿情數據
(6)Tumblr:各種福利圖片、視頻。
6.就業招聘
(1)拉勾:互聯網行業人才需求數據。
(2)中華英才網:招聘信息數據。
(3)智聯招聘:招聘信息數據。
(4)獵聘網:高端職位招聘數據。
7.餐飲食品
(1)美團外賣:區域商家、銷量、評論數據。
(2)網路外賣:區域商家、銷量、評論數據。
(3)餓了么:區域商家、銷量、評論數據。
(4)大眾點評:點評、輿情數據。
8.交通旅遊
(1)12306:鐵路運行數據。
(2)攜程:景點、路線、機票、酒店等數據。
(3)去哪兒:景點、路線、機票、酒店等數據。
(4)途牛:景點、路線、機票、酒店等數據。
(5)貓途鷹:世界各地旅遊景點數據,來自全球旅行者的真實點評。
類似的還有同程、驢媽媽、途家等
9.電商平台
(1)亞馬遜:商品、銷量、折扣、點評等數據
(2)淘寶:商品、銷量、折扣、點評等數據
(3)天貓:商品、銷量、折扣、點評等數據
(4)京東:3C產品為主的商品信息、銷量、折扣、點評等數據
(5)當當:圖書信息、銷量、點評數據。
類似的唯品會、聚美優品、1號店等。
10.影音數據
(1)豆瓣電影:國內最受歡迎的電影信息、評分、評論數據。
(2)時光網:最全的影視資料庫,評分、影評數據。
(3)貓眼電影專業版:實時票房數據,電影票房排行。
(4)網易雲音樂:音樂歌單、歌手信息、音樂評論數據。
11.房屋信息
(1)58同城房產:二手房數據。
(2)安居客:新房和二手房數據。
(3)Q房網:新房信息、銷售數據。
(4)房天下:新房、二手房、租房數據。
(5)小豬短租:短租房源數據。
12.購車租車
(1)網易汽車:汽車資訊、汽車數據。
(2)人人車:二手車信息、交易數據。
(3)中國汽車工業協會:汽車製造商產量、銷量數據。
13.新媒體數據
新榜:新媒體平台運營數據。
清博大數據:微信公眾號運營榜單及輿情數據。
微問數據:一個針對微信的數據網站。
知微傳播分析:微博傳播數據。
14.分類信息
(1)58同城:豐富的同城分類信息。
(2)趕集網:豐富的同城分類信息。
如果你是小白,想通過爬蟲獲得有價值的數據,推薦我們的體系課程——Python爬蟲:入門+進階
三、數據交易平台
由於現在數據的需求很大,也催生了很多做數據交易的平台,當然,出去付費購買的數據,在這些平台,也有很多免費的數據可以獲取。
優易數據:由國家信息中心發起,擁有國家級信息資源的數據平台,國內領先的數據交易平台。平台有B2B、B2C兩種交易模式,包含政務、社會、社交、教育、消費、交通、能源、金融、健康等多個領域的數據資源。
數據堂:專注於互聯網綜合數據交易,提供數據交易、處理和數據API服務,包含語音識別、醫療健康、交通地理、電子商務、社交網路、圖像識別等方面的數據。
四、網路指數
網路指數:指數查詢平台,可以根據指數的變化查看某個主題在各個時間段受關注的情況,進行趨勢分析、輿情預測有很好的指導作用。除了關注趨勢之外,還有需求分析、人群畫像等精準分析的工具,對於市場調研來說具有很好的參考意義。同樣的另外兩個搜索引擎搜狗、360也有類似的產品,都可以作為參考。
阿里指數:國內權威的商品交易分析工具,可以按地域、按行業查看商品搜索和交易數據,基於淘寶、天貓和1688平台的交易數據基本能夠看出國內商品交易的概況,對於趨勢分析、行業觀察意義不小。
友盟指數:友盟在移動互聯網應用數據統計和分析具有較為全面的統計和分析,對於研究移動端產品、做市場調研、用戶行為分析很有幫助。除了友盟指數,友盟的互聯網報告同樣是了解互聯網趨勢的優秀讀物。
愛奇藝指數:愛奇藝指數是專門針對視頻的播放行為、趨勢的分析平台,對於互聯網視頻的播放有著全面的統計和分析,涉及到播放趨勢、播放設備、用戶畫像、地域分布、等多個方面。由於愛奇藝龐大的用戶基數,該指數基本可以說明實際情況。
微指數:微指數是新浪微博的數據分析工具,微指數通過關鍵詞的熱議度,以及行業/類別的平均影響力,來反映微博輿情或賬號的發展走勢。分為熱詞指數和影響力指數兩大模塊,此外,還可以查看熱議人群及各類賬號的地域分布情況。
除了以上指數外,還有谷歌趨勢、搜狗指數、360趨勢、艾漫指數等等。
五、網路採集器
網路採集器是通過軟體的形式實現簡單快捷地採集網路上分散的內容,具有很好的內容收集作用,而且不需要技術成本,被很多用戶作為初級的採集工具。
造數:新一代智能雲爬蟲。爬蟲工具中最快的,比其他同類產品快9倍。擁有千萬IP,可以輕松發起無數請求,數據保存在雲端,安全方便、簡單快捷。
火車採集器:一款專業的互聯網數據抓取、處理、分析,挖掘軟體,可以靈活迅速地抓取網頁上散亂分布的數據信息。
八爪魚:簡單實用的採集器,功能齊全,操作簡單,不用寫規則。特有的雲採集,關機也可以在雲伺服器上運行採集任務。

③ 天權教育電腦上怎麼快速批量採集爬取抓圖淘寶、天貓、京東等各大電商平台

首先呢,我們去復制一下淘寶天貓商品的網址,雖然我們要下載的是手機上詳情圖,但是我們還是只需復制商品地址就可以了。

這樣下載是不是很方便也簡單了呢,不妨試試。

④ python網路爬蟲可以幹啥

《Python3爬蟲入門到精通課程視頻【附軟體與資料】【34課時】--崔慶才》網路網盤資源免費下載

鏈接:https://pan..com/s/1PM2MA-3Ba03Lcs2N_Xa1Rw

?pwd=zxcv 提取碼:zxcv

Python3爬蟲入門到精通課程視頻【附軟體與資料】【34課時】--崔慶才|章節5: 分布式篇|章節4: 框架篇|章節3: 實戰篇|章節2: 基礎篇|章節1: 環境配置|Python3爬蟲課程資料代碼.zip|2018-Python3網路爬蟲開發實戰-崔慶才.pdf|課時06:Python爬蟲常用庫的安裝.zip|課時05:Python多版本共存配置.zip|課時04:MySQL的安裝.zip|課時03:Redis環境配置.zip|課時02:MongoDB環境配置.zip|課時01:Python3+Pip環境配置.zip|課時13:Selenium詳解.zip

⑤ 如何獲取大數據信息

一、公開資料庫
常用數據公開網站:

UCI:經典的機器學習、數據挖掘數據集,包含分類、聚類、回歸等問題下的多個數據集。很經典也比較古老,但依然活躍在科研學者的視線中。

國家數據:數據來源中華人民共和國國家統計局,包含了我國經濟民生等多個方面的數據,並且在月度、季度、年度都有覆蓋,全面又權威。

亞馬遜:來自亞馬遜的跨科學雲數據平台,包含化學、生物、經濟等多個領域的數據集。

figshare:研究成果共享平台,在這里可以找到來自世界的大牛們的研究成果分享,獲取其中的研究數據。

github:一個非常全面的數據獲取渠道,包含各個細分領域的資料庫資源,自然科學和社會科學的覆蓋都很全面,適合做研究和數據分析的人員。

二、利用爬蟲可以獲得有價值數據
這里給出了一些網站平台,我們可以使用爬蟲爬取網站上的數據,某些網站上也給出獲取數據的API介面,但需要付費。

1.財經數據,2.網貸數據;3.公司年報;4.創投數據;5.社交平台;6.就業招聘;7.餐飲食品;8.交通旅遊;9.電商平台;10.影音數據;11.房屋信息;12.購車租車;13.新媒體數據;14.分類信息。

三、數據交易平台
由於現在數據的需求很大,也催生了很多做數據交易的平台,當然,出去付費購買的數據,在這些平台,也有很多免費的數據可以獲取。

優易數據:由國家信息中心發起,擁有國家級信息資源的數據平台,國內領先的數據交易平台。平台有B2B、B2C兩種交易模式,包含政務、社會、社交、教育、消費、交通、能源、金融、健康等多個領域的數據資源。

數據堂:專注於互聯網綜合數據交易,提供數據交易、處理和數據API服務,包含語音識別、醫療健康、交通地理、電子商務、社交網路、圖像識別等方面的數據。



四、網路指數
網路指數:指數查詢平台,可以根據指數的變化查看某個主題在各個時間段受關注的情況,進行趨勢分析、輿情預測有很好的指導作用。除了關注趨勢之外,還有需求分析、人群畫像等精準分析的工具,對於市場調研來說具有很好的參考意義。同樣的另外兩個搜索引擎搜狗、360也有類似的產品,都可以作為參考。

阿里指數:國內權威的商品交易分析工具,可以按地域、按行業查看商品搜索和交易數據,基於淘寶、天貓和1688平台的交易數據基本能夠看出國內商品交易的概況,對於趨勢分析、行業觀察意義不小。

友盟指數:友盟在移動互聯網應用數據統計和分析具有較為全面的統計和分析,對於研究移動端產品、做市場調研、用戶行為分析很有幫助。除了友盟指數,友盟的互聯網報告同樣是了解互聯網趨勢的優秀讀物。

五、網路採集器
網路採集器是通過軟體的形式實現簡單快捷地採集網路上分散的內容,具有很好的內容收集作用,而且不需要技術成本,被很多用戶作為初級的採集工具。

造數:新一代智能雲爬蟲。爬蟲工具中最快的,比其他同類產品快9倍。擁有千萬IP,可以輕松發起無數請求,數據保存在雲端,安全方便、簡單快捷。

火車採集器:一款專業的互聯網數據抓取、處理、分析,挖掘軟體,可以靈活迅速地抓取網頁上散亂分布的數據信息。

八爪魚:簡單實用的採集器,功能齊全,操作簡單,不用寫規則。特有的雲採集,關機也可以在雲伺服器上運行採集任務。

閱讀全文

與如何爬取天貓資料庫相關的資料

熱點內容
招代理什麼靠譜 瀏覽:288
nba2k20端游怎麼交易巨星 瀏覽:562
域名在哪裡可以代理 瀏覽:205
藍牙鍵盤聊微信如何發出信息 瀏覽:679
員工怎麼保持技術領先 瀏覽:890
數據幀中包含mac地址還有哪些 瀏覽:771
全人才小程序是做什麼的 瀏覽:27
青島萬通證券用哪個軟體交易 瀏覽:384
交大電子信息專業如何 瀏覽:738
河北保定相親市場在哪裡 瀏覽:726
沒有核心技術怎麼走出來 瀏覽:827
哪些產品不需要生產許可證 瀏覽:303
馬自達總代理怎麼做 瀏覽:513
鋼材銷售代理屬於什麼行業 瀏覽:404
普通超時空什麼時候交易 瀏覽:379
互聯網技術與應用學的是什麼 瀏覽:564
小程序怎麼買折扣的商品 瀏覽:837
qq信息中如何插入圖片 瀏覽:551
最近市場上生牛頭多少錢一斤啊 瀏覽:140
百度推廣的產品有哪些 瀏覽:424