⑴ 如何大數據分析
1、可視化分析
可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這謹陸些被全世界統計學家所公認的各種統計方法才能深入數據做銀內部,挖掘出公認的價值。
3、預測性分析能力
預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4、語義引擎
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文祥胡頃檔」中智能提取信息。
5、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
⑵ 個人如何用大數據
首先是需要有數據,然後基於數據的特徵做分析處理。
個人的問題可能是沒有大數據源,以及沒有財力購買大數據分析工具。
譬如有大量的股票的價格信息可以做股票分析和預測,如果有房價數據(當然是一直在漲。。。),可以看看一年中合適的出手時機。
總之,一要看需求,而要看數據,三要結合工具。工具推薦免費的Hadoop等大數據工具,配合另外一些開源分析軟體,但對個人挑戰大。如果中小型企業,可以使用永洪科技的大數據BI。
以後可能會有大數據在線分析平台,個人可能會有更多應用可用。
⑶ 企業如何應用大數據分析
企業應用大數據分析就要藉助一些數據分析工具,比如商業智能軟體FineBI,有了工具就等於完成了一半。一般數據分析工作可分為以下三個步驟:
1、明確業務需求
按業務驅動的角度,了解業務部門需要解決什麼樣的問題,業務范圍是什麼,所要達成的效果又是怎樣,依據這些需求來實施部署商業智能工具。
2、數據結合與關聯
由於企業數據海量的特點和多元化的結構形式,需要商業分析工具具有海量的數據探索和分析能力,能夠實時有效的與已有數據結合,產生精確的行動方向。
此外,企業數據的價值最終體現在客戶的消費上,因此,對於能直接產生價值的數據要和客戶關系和交易數據進行結合和關聯,從而做出直接導向效益的決策。
3、培養數據分析人才
企業的數據分析,商業智能系統的部署是關鍵,但業務人員數據分析水平也同樣重要。這就要求人員在信息過程管理當中要逐漸培養科學化管理數據的意識,企業上下也要統一共識,從而形成對企業數據的綜合管理。
⑷ 大數據分析一般用什麼工具分析
大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash
⑸ 如何運用大數據分析
可視化分析大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2. 數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。
3. 預測性分析
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4. 語義引擎
非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。
5.數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。