1. gap =(產生下一事件發生的時間間隔)
大數據傳遞時:通訊數據包是連續傳遞的,主機會選擇min值來進行通訊。
無數據傳遞時:通訊是空閑狀態,主機會選擇max值來定期詢問從機狀態,以保持連接不中斷。(在空閑時,由於使用max的值作為通訊周期,會影響到程序的下一個命令的發送時間)
GAP-通用接入規范:
BLE協議棧的GAP層負責處理設備的接入方式和過程,包括設備發現,鏈路建立,鏈路終止,啟動安全功能,設備配置。
2. 淺析希爾排序演算法
希爾排序是一種改進的插入排序演算法,由D.L.Shell於1959年提出。其核心思想是通過逐步減小元素間的間隔,先讓數組中部分元素有序,最終實現整個數組有序。
排序過程分為多個步驟,以數組 [ 95, 23, 40, 6, 98, 13, 66, 33 ]為例。初始化間隔gap= n / 2(n為數組長度),然後讓gap減半,直到gap= 1。每一步中,間隔為gap的元素先按插入排序規則進行排列,如間隔為4時,數組分為 [95, 98], [23, 13], [40, 66], [6, 33],然後每組內插入排序,再讓gap減半,如此類推直至gap= 1,整個數組按順序排列完成。
希爾排序的時間復雜度受間隔gap的選擇影響,當gap= 1時,退化為插入排序,復雜度為O(N²)。而Hibbard增量下的希爾排序復雜度為O(N3/2)。空間復雜度為O(1),穩定性方面,由於多次插入排序,元素的相對順序在不同的排序過程中可能改變,因此希爾排序通常被認為是不穩定的。
適用場景廣泛,尤其在大型數組排序中,希爾排序比插入排序和選擇排序效率更高。對於大數據量的排序任務,希爾排序的性能優勢更加明顯。
3. 大數據的生命周期的九個階段
大數據的生命周期的九個階段
企業建立大數據的生命周期應該包括這些部分:大數據組織、評估現狀、制定大數據戰略、數據定義、數據收集、數據分析、數據治理、持續改進。
一、大數據的組織
沒有人,一切都是妄談。大數據生命周期的第一步應該是建立一個專門預算和獨立KPI的「大數據規劃、建設和運營組織」。包括高層的首席數據官,作為sponsor,然後是公司數據管理委員會或大數據執行籌劃指導委員會,再往下就是大數據的項目組或大數據項目組的前身:大數據項目預研究團隊或大數據項目籌備組。這個團隊是今後大數據戰略的制定和實施者的中堅力量。由於人數眾多,建議引入RACI模型來明確所有人的角色和職責。
二、大數據的現狀評估和差距分析
定戰略之前,先要做現狀評估,評估前的調研包括三個方面:一是對外調研:了解業界大數據有哪些最新的發展,行業頂尖企業的大數據應用水平如何?行業的平均尤其是主要競爭對手的大數據應用水準如何?二是對內客戶調研。管理層、業務部門、IT部門自身、我們的最終用戶,對我們的大數據業務有何期望?三是自身狀況摸底,了解自己的技術、人員儲備情況。最後對標,作差距分析,找出gap。
找出gap後,要給出成熟度現狀評估。一般而言,一個公司的大數據應用成熟度可以劃分為四個階段:初始期(僅有概念,沒有實踐);探索期(已經了解基本概念,也有專人進行了探索和探討,有了基本的大數據技術儲備);發展期(已經擁有或正在建設明確的戰略、團隊、工具、流程,交付了初步的成果);成熟期(有了穩定且不斷成熟的戰略、團隊、工具、流程,不斷交付高質量成果)。
三、大數據的戰略
有了大數據組織、知道了本公司大數據現狀、差距和需求,我們就可以制定大數據的戰略目標了。大數據戰略的制定是整個大數據生命周期的靈魂和核心,它將成為整個組織大數據發展的指引。
大數據戰略的內容,沒有統一的模板,但有一些基本的要求:
1. 要簡潔,又要能涵蓋公司內外干係人的需求。
2. 要明確,以便清晰地告訴所有人我們的目標和願景是什麼。
3. 要現實,這個目標經過努力是能達成的。
四、大數據的定義
我認為:「數據不去定義它,你就無法採集它;無法採集它,你就無法分析它;無法分析它,你就無法衡量它;無法衡量它,你就無法控制它;無法控制它,你就無法管理它;無法管理它,你就無法利用它」。所以「在需求和戰略明確之後,數據定義就是一切數據管理的前提」。
五、 數據採集
1. 大數據時代的數據源很廣泛,它們可能來自於三個主要方面:現有公司內部網各應用系統產生的數據(比如辦公、經營生產數據),也有來自公司外互聯網的數據(比如社交網路數據)和物聯網等。
2.大數據種類很多,總的來講可以分為:傳統的結構化數據,大量的非結構化數據(比如音視頻等)。
3. 數據採集、挖掘工具很多。可以基於或集成hadoop的ETL平台、以互動式探索及數據挖掘為代表的數據價值發掘類工具漸成趨勢。
4. 數據採集的原則:在數據源廣泛、數據量巨大、採集挖掘工具眾多的背景下,大數據決策者必須清楚地確定數據採集的原則:「能夠採集到的數據,並不意味著值得或需要去採集它。需要採集的數據和能夠採集到的數據的"交集",才是我們確定要去採集的數據。」
六、數據處理和分析
業界有很多工具能幫助企業構建一個集成的「數據處理和分析平台」。對企業大數據管理者、規劃者來講,關鍵是「工具要滿足平台要求,平台要滿足業務需求,而不是業務要去適應平台要求,平台要去適應廠商的工具要求」。那麼這個集成的平台應該有怎樣的能力構成呢?它應該能檢索、分類、關聯、推送和方便地實施元數據管理等。見下圖:
七、 數據呈現
大數據管理的價值,最終要通過多種形式的數據呈現,來幫助管理層和業務部門進行商業決策。大數據的決策者需要將大數據的系統與BI(商業智能)系統和KM(知識管理)系統集成。下圖就是大數據的各種呈現形式。
八、 審計、治理與控制
1.大數據的審計、治理和控制指的是大數據管理層,組建專門的治理控制團隊,制定一系列策略、流程、制度和考核指標體系,來監督、檢查、協調多個相關職能部門的目標,從而優化、保護和利用大數據,保障其作為一項企業戰略資產真正發揮價值。
2.大數據的治理是IT治理的組成部分,大數據的審計是IT審計的組成部分,這個體系要統籌規劃和實施,而不是割裂的規劃和實施。
3.大數據的審計、治理與控制的核心是數據安全、數據質量和數據效率。
九、 持續改進
基於不斷變化的業務需求和審計與治理中發現的大數據整個生命周期中暴露的問題,引入PDCA等方法論,去不斷優化策略、方法、流程、工具,不斷提升相關人員的技能,從而確保大數據戰略的持續成功!