導航:首頁 > 數據處理 > 大數據團隊該如何績效考核

大數據團隊該如何績效考核

發布時間:2025-01-18 06:08:33

⑴ 企業實施大數據的路徑

企業實施大數據的路徑

企業實施大數據的具體的建設路徑有兩個方面,一方面是自下而上,另一方面是自上而下。
自上而下
自上而下的路徑,首先是有序地在管理層建立數據的決策文化,在企業文化層面建設起數據的使用意識,然後建立對應的組織架構、對應的部門和團隊,確定需要招聘什麼樣的人進來、需要多少人、具體職責怎麼劃分,最後建立起對應的技術平台。
自下而上
自下而上第一是讓員工學習和掌握相關技術技能,可以通過內部培訓,也可以通過外部招聘。第二,要有規劃地設計,以後系統怎麼走、怎麼做, 要有一個長期的規劃。第三,要有明確的績效考核的指標,數據的管理、質量的管控、效益怎麼保證。第四,在思維上要保持一個開放的態度,互聯網時代大數據還在發展的初期,一般認為大數據在企業的應用還處於幼兒園階段,這個時候還有很多東西要學習,必須保持一個開放的心態,不斷地學習,才能真正把事情做好。
(一)建立企業的數據文化
文化是企業看待事物的價值觀和執行行動的衡量標准。建立數據文化就是要在整個企業層面建立一種以客觀的數據為決策依據和衡量標準的價值觀和制度體系,為企業能夠真正利用大數據產生價值提供基礎。沒有這個基礎,企業即使擁有再好的技術和資源,也無法利用好它們來為企業服務。
什麼叫企業數據文化?它包括六個方面的內容。
第一,數據文化主要體現在數據驅動決策,決策主要通過數據來說話。
第二,企業運行效率的分析。一方面,通過對數據進行深度分析,可以像望遠鏡一樣了解企業各方面的運營情況,另一方面,數據可以像顯微鏡一樣去觀察企業運營的細節,找到以優化的地方。
第三,通過數據來分析營銷規劃的得失。通常企業做促銷活動,銷售量提升了就覺得是成功了,但是促銷是有成本的,銷量提升了,是不是真的就帶來效益了呢?
第四,在以人為本的時代,企業對員工的人身安全和健康的責任越發重大了。如果能通過客觀可衡量的數據,關注員工的工作環境和舒適性,對保障良好健康的工作環境、提升員工的滿意度將起到非常重要的作用。
第五,員工績效,必須要有一個數量化的指標。
第六,價值鏈中的數據管理。在縱向供應鏈中通過數據的分享和交換,可以更好地讓供應鏈上下游的企業了解整個供應鏈上的需求、庫存和供給,從而可以優化鏈條上的庫存,主動發起供給的准備,更快地應對市場的變化。在橫向生態鏈中,通過分享和交換數據,可以在全方位生活場景中對用戶進行分析,從而打造出滿足用戶更廣泛需求的一站式服務,不僅可以挖掘出更多的商業機會,而且增強了用戶的粘性。
(二)建立企業的數據戰略
建立企業的數據戰略,需要建設三個方面的內容,如下圖
數據模型
第一個方面是建立完整的數據模型。數據模型的目的是正確地定義數據,對數據進行分類和確定數據交互之間的標准。將對企業業務管理的理解,轉化為數據的要求,從而理解到底什麼樣的數據需要管理。不同的系統產生不同的數據,各系統之間的數據和數據之間互相交互的內容是什麼。企業內部有不同的系統,ERP 系統、供應鏈系統、CRP 系統等,用戶信息放在哪,供應商信息、物聯網信息、財務信息分別放在哪,他們之間怎麼協調,怎麼溝通?這些都是需要考慮的問題。
數據服務
第二個方面是建立數據服務體系,包括選用什麼樣的技術平台、採用什麼樣的數據技術,不同的系統如何使用這些不同技術,包括傳統的資料庫、數據倉庫、商業智能、新型的 Hadoop 等。基於業務架構的設計,來設計數據應用的架構,然後通過數據交互介面來交換數據,從而避免出現數據孤島,同時建立統一的數據規劃,確保數據源的統一和一致性,為後期的數據分析提供支持。
數據管理
第三個方面是建立數據的治理體系。數據治理包括數據的管理制度和整體生命周期的管理。數據正在成為一種資產,與此相對應的,資產需要體系化的管理。數據的資產權利管理,包括確定數據的所有權、確定每個數據的所有者、誰是這個數據的管理者、誰來負責這個數據的准確性、誰來保障數據的質量,等等。數據的高質量是進行數據分析的基礎,數據如果是錯誤的,怎麼分析都不會有正確的結果。同時,數據的合規和安全的管理也是核心環節,比如誰可以操作數據、誰負責數據的安全、備份和服務等,一個嚴格的數據的合規和安全管控制度是必不可少的。
數據的生命周期管理,包括如何和何時建立數據、什麼時候可以修改、誰批准修改、數據如何消除等。國內的企業這方面做得比較欠缺,不只是數據,還包括設備、電腦等,電腦報廢了不能用了,就直接丟棄。在這方面,國外企業做得不錯,國外信息安全的企業, 通常會花錢請第三方公司來進行專業的數據銷毀的處理,甚至每台電腦花費幾百塊錢來進行環保型銷毀。比如在一些數據消除案例中,數據要用各種方 法來確保被徹底擦除,比如有些企業要求對數據進行格式化七遍,以避免可 能的數據恢復
(三)建立企業的數據組織能力
建立數據的組織能力,包括設立合適的組織角色的定位、招聘到合適的人員、設立合適的組織結構以及設計合適的責權利,等等。
第一,數據的組織能力,建議有條件的公司可以建立首席數據官(ChiefData Officer)崗位,這個崗位主要是設計整個數據的戰略,領導數據戰略的落地,以及通過數據和業務管理層進行溝通、對話,傳遞數據的價值。
第二,數據科學家的作用非常重要,數據科學家研究的是如何用最好、最科學的演算法得出最好的結果。同樣一堆數據在那兒,十個不同的人在看,十個人看的結果都不同。那麼為什麼科學家算得准呢?因為他的知識夠深入,他了解哪個因素最重要,那麼多因素裡面他應該選哪部分來分析。數據科學家目前是整個市場上最欠缺的人才,因為同時兼具數據演算法專業知識和業務知識的人才是極其難得的。數據科學家可以分為三種類型,第一種是技術型數據科學家,他們是計算演算法方面的行家,對各種統計分析技術非常在行;第二種是應用數據科學家,他們對數據架構非常熟悉,熟悉數據在各個系統中的分布,能夠很好地把各種數據進行集成管理;第三種是業務數據科學家,這些人對行業知識和企業業務非常熟悉,同時兼具一部分對數據處理技術的了解,能很好地把業務的需要和特徵轉換成數據的處理要求,同時可以很好地將數據處理結果轉換成業務的視角和言語,來傳遞給業務管理者。
第三,對於一定規模的企業,我們通常建議,企業要建立一個集中式的數據管理運營中心。雲計算服務就是集中化管理方式,成本最低、靈活性最高、擴展性最強。
第四,整個數據組織的架構標准不是以技術、產品來交付,而是以商業價值交付為衡量標准。考量數據分析的產出能力,不是數據分析的速度有多快,也不是數據量有多大,而是數據分析的結果對業務到底有沒有幫助、是不是有指導意義。這也是所有數據分析的核心價值,也是對大數據中「大」的含義的最核心的衡量標准——「大」到產生業務價值。這個衡量標准對技術組織來說,執行起來有些困難,所以必須建立一個明確的績效評估標准和價值評估標准,讓技術人員能夠更多地從業務角度來考慮所做的工作的價值,而不陷入技術優先論的境地。
第五,提升一線人員的業務決策權和數據決策權,建立一個扁平化管理的組織。通過系統化的培訓來不斷培養員工的數據分析能力。由專業數據分析人員和演算法人員設計的數據分析解決方案或者產品,必須以簡單易用的方式提供給一線員工,同時更為重要的是,加強相關的解決方案或者數據產品的系統化培訓,讓更多的員工意識到這些解決方案或者產品的價值,並樂於在日常工作中使用。我們建議數據建模 / 數據產品研發的費用和針對一線員工的使用培訓的投入應該是對半分的。為了更好地推進培訓,企業還可以考慮成立興趣驅動的數據協會,讓更多的員工加入到該協會中,定期舉行培訓課程、研討沙龍以及聘請外部專家做相關分享以開拓視野。
建立了企業的數據組織能力後,企業使用數據的過程如下闡述。
首先搜集數據,從不同地方把數據找到,找到以後選擇演算法。其次進行業務關聯的分析,確定哪些指標、哪些維度是有意義的,這就是數據科學乾的事。業務科學家和數據科學家可以分離,也可以整合,大部分企業是一套人馬來做,展示成一個業務的可以接受、可以理解的方法,如果單純是數據展示,可能管理層、業務部門看不懂,這就需要轉換成業務管理者可以理解的語言和信息。最後,提交給管理層或者是對應的部門作商業決策。這就 完成了一個完整的價值交付。
在上述的數據處理過程中,數據團隊中有不同的崗位來執行對應的工作。在數據的採集和清理環節,主要是數據管理員,包括企業內部的數據抓取, 外部的微博、淘寶、第三方電信等的數據採集,數據很多,需要做清理,把一些沒有用的數據處理掉,留下來有效的數據,這主要是數據管理員要做的事情。接下來是數據科學家,選擇正確的演算法,同時可以根據業務的維度製作各種不同的模型,來得出一個分析的結果。再接下來,還有一個團隊是業務分析師,根據這些分析結果,將其轉換成業務人員可以理解的語言和展示方法,交給 CDO 和核心管理層、決策層做溝通,幫助他們作決策。作為整個技術平台的提供者,還有一個技術團隊做具體的平台搭建,可以自行開發基於 Hadoop 開源的大數據平台,或者購買第三方的系統做管理維護,也可以 直接使用大數據的 SaaS 服務平台來快速建立大數據技術能力。
(四)選擇技術平台
企業以往使用傳統數據進行復雜分析時,多使用數據倉庫和商務智能系統,也就是所謂的 OLAP 系統,對傳統數據比如財務數據、用戶數據進行抓取、挖掘和分析,然後通過頁面展示出來,這是非實時的分析系統。在互聯網+時代,要將第三方的社交數據和電商數據,比如微博、電商數據等放進來分析是很難的,因為傳統的架構是基於結構化的數據基礎上的,而現在更大量的數據是非結構化的數據,傳統方式很難支持。這樣我們分析數據就碰到一些困難,大數據應運而生,Hadoop 是其中最重要的一個平台。
Hadoop 是一個生態系統,它裡麵包括了一些計算的系統、數據存儲的系統、數據分析的系統,它是阿帕奇組織在 2004 年正式開展的一個項目。Hadoop 是一個非常重要的革命性的應用,因為它是免費發布,讓很多人都有機會使用,現在很多企業都是以 Hadoop 開源平台為基礎,再由內部技術人員做一些優化來使用。
傳統數據和大數據的關系是一個發展和結合的關系。傳統數據還是可以分析出對業務有價值的信息,也還是用以前倉庫的方式分析,新型數據用大數據的方式分析,兩個系統最後進行整合,形成一個後端的解決方案;現在也出現了一種完全集成式的方案,這是最近一兩年出現的新的大數據平台,可以同時兼容新的大數據和傳統的數據,這種集成式的應用將會越來越多。市場上很多公司的商業套件和 Hadoop 開源的方案有什麼區別呢?它們的主要區別是商業套件在性能上做了優化、提 升,在安全上做了增強,它加入了針對對應行業的業務理解,幫助企業預置了建模的方法和工具,但問題是價格比較貴。所以,各種方案的選擇是基於企業的實際情況,包括預算和團隊能力等因素綜合考慮的。
(五)數據的開放和共享
對於數據的來源,企業內部通常不具有大數據分析所需要的所有數據。 2014 年,我國的大數據市場規模 84 個億,預計 2015 年達到 166 個億,增長40%。相信隨著大數據交易平台的建設,增長還會更多。根據中國信息通訊研究院的研究報告,企業對大數據的認同度,認為「比較重要」的達到 97%,這說明企業對大數據的重要性是有認識的,問題是怎麼來落地。企業對待大數據往往關注的是安全性和穩定性。這說明雖然企業已經意識到大數據的重要性,但還是比較保守,對安全的顧慮影響了對數據商業價值的挖掘。隨著安全技術的發展以及對商業價值的認識的提高,企業應用大數據、獲取和交換數據將會越來越多。安全和商業價值永遠是一對需要衡量的關系,它就像速度和成本、速度和質量一樣是相輔相成、互相平衡的關系,要同時追求兩方面是有困難的,不同時期要有不同的策略。
企業對政府公開數據的需求非常強烈。市場上有很多針對政府數據的創業公司,例如一家企業叫法海風控,他是從法律層面分析企業的信用狀態,通過分析企業相關的法律文書,比如這家企業過去數年有沒有相關的法律官司、勝訴還是敗訴,也包括相關聯企業涉及到的法律行為,從這些角度提供風控的判斷,這是一個很好的應用案例,這取決於政府的數據公開程度。政府擁有海量的數據,如交通數據、社保數據等,一旦這些數據能夠公開,將會帶來大量的創業機會,也會給企業帶來更多考慮問題的維度,所以企業都希望政府能夠盡快地公開數據。
(六)找好切入點,小步快走
關於實施路徑,企業或多或少已經有一些數據、有一些系統,這個時候是推倒重來,還是有一些別的方法?數據能夠在哪些領域實現業績的大幅提高?數據能在哪些領域實現企業運營效率的提升?這些問題很重要,一開始就必須提出來。每個重要業務部門和職能部門都需要考慮這個問題,並展開相關的研討。企業高管實施大數據戰略的時候,需要高度重視這一步,但在國內很多企業往往忽略這一方面,投入大數據往往不是以提升業績為導向,而是以學術為導向,使得很多企業實施大數據戰略後,看不到數據對企業績效的提升,從而使得大數據戰略流產。
(七)放眼未來,永遠在路上
大數據是不是萬能的?是不是永遠有效的?大數據的使用有限制嗎?正確地認識這些問題,有助於企業更好地利用大數據,更客觀地看待大數據。
第一,大數據不是萬能的,大數據的使用是有限制的。大數據的使用,首先是在討論相關性的時候,而在判斷、解決一個具體問題的時候,大數據不是最好的方法。
第二,大數據即使大,也不能囊括所有的數據,大數據終究有成本的問題,准確性還不會達到百分之百。雖然它足夠可以做預測,但是不是絕對正確的東西。
第三,我們不能過於相信數據,因為有時候數據會解讀得不對,所以還要嘗試做一個驗證,如果這明顯和常識相反,你要驗證一下你的分析方法否正確。
還有一個問題是數據的安全,數據這么重要,能不能保護好數據,數據使用過程中有一些問題和潛在的風險。
最後的寄語:大數據是文化和技術的結合,最終的目的是產生業務價值。
第一,大數據技術是 IT 驅動業務變革的一個機會,不管從IT 部門本身的定位、IT 對企業產生的作用來說,還是企業能夠增強核心競爭力的角度來說,大數據都是一個非常重要的推動力。
第二,應用大數據技術的前提是要有一個數據驅動決策的企業文化,如果用大數據形成了一個報表,企業管理者作決策時根本不看,這就沒有意義了。只有當企業建立了數據驅動決策的文化,並真實地執行後,數據的價值才能夠充分實現。所以大數據使用的重要前提是企業有數據驅動決策的文化。
第三,數據本身只是一些信息,大數據的價值不在於數據本身,而在於如何通過數據做分析整理,最後產生分析和預測,傳遞業務價值,這才是使用大數據的目的和核心。

⑵ 數據分析師會遇見的8大經典問題!

在數據分析師的日常工作中,經常會遇到一些讓人頭痛的問題。本文將整理並深入分析8個數據分析師經常遇到的經典問題,幫助大家更好地理解和應對。

問題1:「不就是一個數嗎,為啥要這么久?」

這個問題反映了業務人員對於數據分析工作的不理解與不尊重。為了解決這個問題,首先要對數據來源和生成過程進行普及宣傳,建立一套標准化流程,持續向業務部門傳達。推薦業務人員閱讀與數據倉庫、數據治理、數據分析相關的書籍與教程,直觀感受數據處理的復雜性。

問題2:「我們的數據可大了,都在那裡了,你為啥分析不出來?」

這通常發生在領導層對大數據概念的理解有誤,以為一堆數據就是「大數據」。面對這種情況,應當明確指出數據的質量與結構問題,同時提醒業務部門數據清理與整合的重要性。對於數據團隊較小或未與數據團隊良好合作的情況,需要謹慎考慮。

問題3:「數據不是數據分析的事嗎,為啥要我參與?」

業務人員可能對自身在數據分析中的角色和價值缺乏認識。應詳細解釋數據分析與業務決策之間的關系,爭取業務部門的理解與支持。若溝通無效,則可通過會議紀要記錄情況,避免後續出現數據混亂時的責怪。

問題4:「你跑你的數去,你問那麼多幹嘛!」

這個問題分為兩個方面。當業務部門未明確取數需求時,應事先確認需求並明確數據口徑。面對不願溝通的情況,則採取公事公辦的方式處理,尋找其他合作良好的部門進行溝通。

問題5:「你做的這個,我早知道了,有沒有深入的分析?」

當業務部門對已有的分析結果表示不滿時,應反思溝通是否到位。可以嘗試建立預測與業務假設之間的聯系,通過數據分析驗證業務假設,從而增強雙方的互動與合作。

問題6:「你預測得到底准不準?」

業務部門對預測結果的准確性存在質疑。應明確預測結果的局限性,並與業務部門討論預測的目的與後續行動。通過實際案例展示數據分析的價值,促進雙方的共同進步。

問題7:「你要是能預測得100%准,我肯定能把業務做好!」

業務部門將預測結果的准確性視為決定業務成敗的關鍵。應避免與業務部門進行細節上的爭論,而是通過分層分析,總結成功案例,引導業務部門關注自身行為與策略調整。

問題8:「你怎麼證明,你做的分析和公司業績提升有關系!」

在績效考核階段,業務部門常會質疑數據分析工作的價值。應建立合理的評估標准,同時通過案例展示數據分析如何影響業務決策與業績提升,增強領導層對數據分析價值的認可。

總之,數據分析師在面對這些常見問題時,需要通過有效的溝通、知識普及和案例分享,建立起與業務部門的良好合作,共同解決數據與業務之間的挑戰,實現數據價值的最大化。

⑶ HR是什麼意思

人力資源,簡稱HR,是指一個組織中的人力資源部門或團隊,負責招聘、培訓、績效評估、薪酬福利管理等一系列與人相關的管理活動。它旨在確保組織擁有足夠數量和質量的員工,以實現組織目標。

在企業運營中,人力資源部門扮演著重要的角色。他們不僅負責員工的招聘和入職培訓,還要進行績效考核,制定薪酬福利政策,處理員工關系等。HR部門的工作涵蓋了員工從入職到離職的整個職業生涯周期。

人力資源部門的工作內容十分廣泛。例如,招聘環節需要根據崗位要求篩選合適的候選人,面試技巧也需要不斷提高。培訓方面,則需要根據員工的發展需求制定相應的培訓計劃。績效考核則需要通過合理的指標體系對員工的工作表現進行評估。此外,薪酬福利管理也是一項重要工作,需要根據市場行情和公司情況制定合理的薪酬福利政策。

除了日常管理活動外,人力資源部門還需要關注員工的職業發展。例如,提供職業規劃指導,幫助員工設定職業目標,並提供相應的支持。同時,HR還需要關注員工的滿意度和忠誠度,通過定期的員工滿意度調查,了解員工的需求和期望,並據此優化工作環境和福利政策。

在當今快速變化的商業環境中,人力資源部門面臨著許多挑戰。如何吸引和留住人才,如何提高員工的工作效率和滿意度,如何確保組織的文化和價值觀得到貫徹,這些都是HR部門需要不斷思考和解決的問題。

人力資源管理是一門綜合性學科,它涵蓋了心理學、社會學、管理學等多個領域。隨著信息技術的發展,人力資源管理也不斷融合新的技術手段,例如使用大數據分析員工行為,利用人工智慧技術進行招聘篩選等。

閱讀全文

與大數據團隊該如何績效考核相關的資料

熱點內容
如何練好單打技術 瀏覽:52
天刀私下交易怕別人找回怎麼做 瀏覽:10
怎麼拿啤酒的代理 瀏覽:480
plc程序中斜杠代表什麼 瀏覽:539
市場建設項目歸哪個部門審批 瀏覽:756
市政管道工程技術員工資多少 瀏覽:928
如何通過分形指示尋找交易契機 瀏覽:95
雙塔市場怎麼去 瀏覽:755
上饒有哪些活禽交易市場 瀏覽:219
程序員用的叫e什麼架構 瀏覽:786
電爐包含哪些產品 瀏覽:753
副卡如何取消信息號 瀏覽:416
南平代辦商標代理服務多少錢 瀏覽:371
誇克我的小程序在哪裡能找到 瀏覽:641
用祛痘產品爆痘怎麼辦 瀏覽:418
如何運用函數數據合並 瀏覽:743
手機小打卡如何連數據網 瀏覽:400
如何對大客戶進行交易 瀏覽:249
古董收藏交易app哪個好 瀏覽:571
大數據團隊該如何績效考核 瀏覽:833