導航:首頁 > 數據處理 > 數據分析師需要學哪些

數據分析師需要學哪些

發布時間:2022-04-20 08:55:42

數據分析需要掌握些什麼知識

統計學,數學,邏輯學是數據分析的基礎,是數據分析師的內功,內功不扎實,學再多都是徒勞。

掌握統計學,我們才能知道每一種數據分析的模型,什麼樣的輸入,什麼樣的輸出,有什麼樣的作用,開始我們並不一定要把每個演算法都弄懂。

如果我們要做數據挖掘師,數據能力是我們吃飯的飯碗。

如果你沒有數學能力,用現成的模型也好,模塊也好,也能做,但一定會影響你的技術提升,當然更影響你的職位晉升。

業務方向

大家在招聘網站中搜索數據分析的職位,大概分為兩類:輔助業務的數據分析職位和數據分析師職位。

1)輔助業務的數據分析:一般在零售業里職位設置較多,該職位一定要對業務爛熟於心,對業務有長時間的積淀和理解,用數據發現業務流程中的問題,並提出合理化的解決方案,分析數據是為整個商業邏輯去做支撐。細分職位包括:市場調查、行業分析和經營分析三類。

2)數據分析師:業務方向的數據分析師,該職位招聘時一定前面有一個限定詞,什麼數據分析師,歸結起來分為三類:產品數據分析師,運營數據分析師和銷售數據分析師。

技術方向

技術方向主要指數據挖掘方向,分為三類:數據挖掘工程師(機器學習)、數據倉庫工程師(構架師)和數據開發工程師。在互聯網和金融行業崗位設置較多

普遍來說:技術方向的基礎崗的工資薪酬要比業務崗的薪酬高一個等級,但是做到管理崗的話,在中國,業務崗的薪酬比技術崗的薪酬要高。

㈡ 數據分析師要學哪些課程

首先給大家說明一下數據分析的技術學習,而技術學習有幾個層面的內容要學習。首先,我們需要對資料庫或者其他渠道中獲得數據。很多人對於數據獲取方面還是要靠很多人,在現在對於數據的獲取只能靠自己了,對於數據的獲取是需要sql工具,而sql工具就是為了統計取數而生的工具,而sql工具一般是解決中型數據,Excel可以應對小型數據的分析。當然,還需要學習r語言、Python、spss等數據,這樣才能夠提供數據的挖掘能力。當然還需要學習資料庫的內容,將數據納入資料庫的本領也需要掌握,學好了這些才能夠做好數據分析。

然後給大家說一下關於統計的內容,統計學是數據分析中至關重要的課程,不管是在業務方面發展還是在技術方面發展都需要重視數據分析工作,大家在學習統計方面知識的時候一定要學會裡面的數據分析思維框架,這樣才能夠對日後的數據分析工作有很好的幫助。

㈢ 數據分析需要掌握哪些知識

高等數學線性代數,概率論,統計學。還有一些數據採集挖掘分析的工具,比如用Python寫個

㈣ 數據分析師需要學習哪些技能

① Excel工具

對於數據分析師來說,Excel是一個必備的技能,經過大量的實踐發現,Excel是一個比較靠譜的工具,如果用Excel分析數據,就能夠做好數據的分析,同時Excel操作也是比較簡單的,不是程序員也能夠正常的使用。現在有很多企業都在使用Excel這項工具進行去分析數據,所以,數據分析師必須要學會使用Excel。


②行業知識


對於數據分析師來說,業務的了解比數據方法論更重要。而且業務學習沒有捷徑,基本都靠不斷的思考與不斷的總結,這樣才能夠做好數據分析。


③SQL


sql是所有資料庫查詢的語言,而資料庫也是有很多的類型的,比如mysql、sqlserver、oracle等等,對於不同的資料庫,sql語法會有所不同,但是總體上大同小異,只是細微處的差別。如果大家有資料庫基礎的話,那麼只需要找些sql的題目做一做,這樣也能夠提到sql水平。


④數據分析思維


如果作為一名數據分析師,需要很縝密的心思以及對數據很敏感的喜歡,這樣才能夠發現他人會遺漏的東西。有力這些還不夠,我們還需要有一個數據分析的思維,那麼怎麼有一個數據分析的思維呢?一般來說,需要梳理分析思路,並搭建分析框架,把分析目的分解成若干個不同的分析要點,即清楚如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標。同時,確保分析框架的體系化和邏輯性。


⑤統計學


一名優秀的數據分析師還應該精通統計學,只有學會了統計學,才能夠進行數據分析,數據分析是通過大量的數據進行挑選出有用的數據,這樣才能夠做好正確的分析。統計學的統計知識能夠讓我們多了一種角度去看待數據,這樣能夠看出不同的情況,為數據分析中提供了參考價值。

㈤ 數據分析師需要學哪些課程

合格的數據分析師需要具備的能力有以下幾點: 1、統計概率基礎; 2、數據分析模型方法; 3、工具的運用。 如果這些技術沒有,也不可能會玩數據分析。所以,CDA主要是針對數據分析師必備能力的技術性學習,是從數據的獲取,儲存,整理,清洗,分析,檢驗到結果報告一個整體的流程,其中每一個環節會涉及到很多知識

㈥ 想考大數據分析師應該學什麼

大數據分析師需要會以下幾個技能:

1、首先最重要的就是需要有一定的計算機系統編程能力以及dmer 的熟練使用。

2、懂工具。能熟練地掌握數據分析相關的常用工具。在當今社會,數據只會越來越龐大,必須依靠強大的數據分析工具幫人們完成數據分析工作,所以掌握數據分析相關的常用工具很重要。

3、懂業務。從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。

4、懂分析。數據分析師需要掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實踐工作中,以便有效的開展數據分析。

基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。

更多關於數據分析師的信息建議咨詢專業機構,CDA數據分析認證中心就很不錯。CDA( Certified Data Analyst),是在數字濟大背景和人工智慧時代趨勢下,源自中國,走向世界,面向全球全行業的專業技能證,旨在提升數字化人才的數據技能,助力企業數字化轉型,推動行業數字化發展。

㈦ 數據分析需要掌握哪些知識呢

數據分析所需要掌握的知識:

㈧ 數據分析師要學什麼內容

數據分析師需要學習統計學、編程能力、資料庫、數據分析方法、數據分析工具等內容,還要熟練使用 Excel,至少熟悉並精通一種數據挖掘工具和語言,具備撰寫報告的能力,還要具備扎實的 SQL 基礎。

統計學


對於互聯網的數據分析來說,並不需要掌握太復雜的統計理論。所以只要按照本科教材,學一下統計學就夠了。


編程能力


學會一門編程語言,會讓你處理數據的效率大大提升。如果你只會在 Excel 上復制粘貼,動手能力是不可能快的。我比較推薦 Python,上手比較快,寫起來比較優雅。


資料庫


數據分析師經常和資料庫打交道,不掌握資料庫的使用可不行。學會如何建表和使用 SQL 語言進行數據處理,可以說是必不可少的技能。


數據倉庫


許多人分不清楚資料庫和數據倉庫的差異,簡單來說,數據倉庫記錄了所有歷史數據,專門設計為方便數據分析人員高效使用的。


數據分析方法


對於互聯網數據分析人員來說,可以看一下《精益創業》和《精益數據分析》,掌握常用的數據分析方法,然後再根據自己公司的產品調整,靈活組合。


數據分析工具


SAS、Matlab、SPSS 這些工具經常有人推薦,我要說的是在互聯網公司一般都用不上。做可視化的 Tableau,統計分析的友盟、網路統計,還有像我們神策分析等。

㈨ 數據分析師入門需要學什麼

1、懂業務


從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。


2、懂管理


一方面是搭建數據分析框架的要求,比如確定分析思路就需要用到營銷、管理等理論知識來指導,如果不熟悉管理理論,就很難搭建數據分析的框架,後續的數據分析也很難進行。另一方面的作用是針對數據分析結論提出有指導意義的分析建議。


3、懂分析


指掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實踐工作中,以便有效的開展數據分析。基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。


4、懂工具


指掌握數據分析相關的常用工具。數據分析方法是理論,而數據分析工具就是實現數據分析方法理論的工具,面對越來越龐大的數據,我們不能依靠計算器進行分析,必須依靠強大的數據分析工具幫我們完成數據分析工作。


5、懂設計


懂設計是指運用圖表有效表達數據分析師的分析觀點,使分析結果一目瞭然。圖表的設計是門大學問,如圖形的選擇、版式的設計、顏色的搭配等等,都需要掌握一定的設計原則。

㈩ 數據分析師需要學什麼

數學知識


對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。


而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。


分析工具


對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。


編程語言


數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。


當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。


業務理解


對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。

閱讀全文

與數據分析師需要學哪些相關的資料

熱點內容
稅務違章信息未總結如何操作 瀏覽:245
程序如何調用富士通掃描儀 瀏覽:830
為什麼現在市場賣燒鴨那麼難 瀏覽:59
看守所什麼程序才能放人 瀏覽:30
網格代理是什麼 瀏覽:302
二手交易房產過戶稅費怎麼算 瀏覽:380
學習自然科學與技術要看什麼書 瀏覽:881
表2數據多次在表1中如何查出 瀏覽:273
excel如何數據平滑 瀏覽:378
匯拓客代理如何結算 瀏覽:725
設置裡面打開位置信息是什麼意思 瀏覽:610
長春職業技術學院學校環境怎麼樣 瀏覽:621
當今代理什麼項目致富快 瀏覽:611
夜跑的話下載個什麼程序 瀏覽:24
程序重復怎麼改 瀏覽:251
注塑產品有鐵粉怎麼調機 瀏覽:553
個人徵信單位信息多久消除 瀏覽:515
華為和夥伴如何協同保證交易信息 瀏覽:676
養生產品的logo圖怎麼做 瀏覽:476
權健產品怎麼樣視頻 瀏覽:31