A. 所謂的大數據,到底有多可怕
大數據有可能涵蓋人們生活的方方面面。
你去餐廳吃飯,用了團購,你的消費習慣、消費能力等數據就共享出去了;
你查看新聞客戶端,你的年齡、閱讀喜好等也共享出去了,你看完新聞後評論一番,你的性格都可能讓別人猜到;
你用滴滴出行,你的經濟情況、居住區域等數據也共享出去了......
當然,你的姓名、手機號碼這些,共享了沒有呢?
收集到信息的各方都會說「不會泄露個人隱私」,但誰能保證呢?
期待國家盡快立法,對大數據中涉及個人敏感信息的保護作出明確的規定。
那樣,才能讓大家享受大數據帶來的便利,免除隱私泄露之憂。
B. 大數據安全的六大挑戰
大數據安全的六大挑戰_數據分析師考試
大數據的價值為大家公認。業界通常以4個「V」來概括大數據的基本特徵——Volume(數據體量巨大)、Variety(數據類型繁多)、Value(價值密度低)、Velocity(處理速度快)。當你准備對大數據所帶來的各種光鮮機遇大加利用的同時,請別忘記大數據也會引入新的安全威脅,存在於大數據時代「潘多拉魔盒」中的魔鬼可能會隨時出現。
挑戰一:大數據的巨大體量使得信息管理成本顯著增加
4個「V」中的第一個「V」(Volume),描述了大數據之大,這些巨大、海量數據的管理問題是對每一個大數據運營者的最大挑戰。在網路空間,大數據是更容易被「發現」的顯著目標,大數據成為網路攻擊的第一演兵場所。一方面,大量數據的集中存儲增加了泄露風險,黑客的一次成功攻擊能獲得比以往更多的數據量,無形中降低了黑客的進攻成本,增加了「攻擊收益」;另一方面,大數據意味著海量數據的匯集,這裡面蘊藏著更復雜、更敏感、價值巨大的數據,這些數據會引來更多的潛在攻擊者。
在大數據的消費者方面,公司在未來幾年將處理更多的內部生成的數據。然而在許多組織中,不同的部門像財務、工程、生產、市場、IT等之間的信息仍然是孤立的,各部門之間相互設防,造成信息無法共享。那些能夠在不破壞壁壘和部門現實優勢的前提下更透明地溝通的公司將更具競爭優勢。
【解決方案】 首先要找到有安全管理經驗並受過大數據管理所需要技能培訓的人員,尤其是在今天人力成本和培訓成本不斷上升的節奏中,這一定足以讓許多CEO肝顫,但這些針對大數據管理人員的巨額教育和培訓成本,是一種非常必要的開銷。
與此同時,在流程的設計上,一定要將數據分散存儲,任何一個存儲單元被「黑客」攻破,都不可能拿到全集,同時對於不同安全域要進行准確的評估,像關鍵信息索引的保護一定要加強,「好鋼用在刀刃上」,作為數據保全,能夠應對部分設施的災難性損毀。
挑戰二:大數據的繁多類型使得信息有效性驗證工作大大增加
4個「V」中的第二個「V」(Variety),描述了數據類型之多,大數據時代,由於不再拘泥於特定的數據收集模式,使得數據來自於多維空間,各種非結構化的數據與結構化的數據混雜在一起。
未來面臨的挑戰將會是從數據中提取需要的數據,很多組織將不得不接受的現實是,太多無用的信息造成的信息不足或信息不匹配。我們可以考慮這樣的邏輯:依託於大數據進行演算法處理得出預測,但是如果這些收集上來的數據本身有問題又該如何呢?也許大數據的數據規模可以使得我們無視一些偶然非人為的錯誤,但是如果有個敵手故意放出干擾數據呢?現在非常需要研究相關的演算法來確保數據來源的有效性,尤其是比較強調數據有效性的大數據領域。
正是因為這個原因,對於正在收集和儲存大量客戶數據的公司來說,最顯而易見的威脅就是在過去的幾年裡,存放於企業資料庫中數以TB計,不斷增加的客戶數據是否真實可靠,依然有效。
眾所周知,海量數據本身就蘊藏著價值,但是如何將有用的數據與沒有價值的數據進行區分看起來是一個棘手的問題,甚至引發越來越多的安全問題。
【解決方案】 嘗試盡可能使數據類型具體化,增加對數據更細粒度的了解,使數據本身更加細化,縮小數據的聚焦范圍,定義數據的相關參數,數據的篩選要做得更加精緻。與此同時,進一步健全特徵庫,加強數據的交叉驗證,通過邏輯沖突去偽存真。
挑戰三:大數據的低密度價值分布使得安全防禦邊界有所擴展
4個「V」中的第三個「V」(Value),描述了大數據單位數據的低價值。這種廣種薄收似的價值量度,使得信息效能被攤薄了,大數據的安全預防與攻擊事件的分析過程更加復雜,相當於安全管理范圍被放大了。
大數據時代的安全與傳統信息安全相比,變得更加復雜,具體體現在三個方面:一方面,大量的數據匯集,包括大量的企業運營數據、客戶信息、個人的隱私和各種行為的細節記錄,這些數據的集中存儲增加了數據泄露風險;另一方面,因為一些敏感數據的所有權和使用權並沒有被明確界定,很多基於大數據的分析都未考慮到其中涉及的個體隱私問題;再一方面,大數據對數據完整性、可用性和秘密性帶來挑戰,在防止數據丟失、被盜取、被濫用和被破壞上存在一定的技術難度,傳統的安全工具不再像以前那麼有用。
【解決方案】 確立有限管理邊界,依據保護要求,加強重點保護,構建一體化的數據安全管理體系,遵循網路防護和數據自主預防並重的原則,並不是實施了全面的網路安全護理就能徹底解決大數據的安全問題,數據不丟失只是傳統的邊界網路安全的一個必要補充,我們還需要對大數據安全管理的盲區進行監控,只有將二者結合在一起,才是一個全面的一體化安全管理的解決方案
挑戰四:大數據的快速處理要求使得獨立決策的比例顯著降低
「4個「V」中最後一個「V」(Velocity),決定了利用海量數據快速得出有用信息的屬性。
大數據時代,對事物因果關系的關注,轉變為對事物相關關系的關注。如果大數據系統只是一種輔助決策系統,這還不是最可怕的。事實上,今天大數據分析日益成為一項重要的業務決策流程,越來越多的決策結果來自於大數據的分析建議,對於領導者最艱難的事情之一,是讓我的邏輯思考來做決定,還是由機器的數據分析做決定,可怕的是,今天看來,機器往往是正確的,這不得不讓我們產生依賴。試想一下,如果收集的數據已經被修正過,或是系統邏輯已經被控制了呢!但是面對海量的數據收集、存儲、管理、分析和共享,傳統意義上的對錯分析和奇偶較驗已失去作用。
【解決方案】 在依靠大數據進行分析、決策的同時,還應輔助其他的傳統決策支持系統,盡可能明智地使用數據所告訴我們的結果,讓大數據為我們所用。但絕對不要片面地依賴於大數據系統。
挑戰五:大數據獨特的導入方式使得攻防雙方地位的不對等性大大降低
在大數據時代,數據加工和存儲鏈條上的時空先後順序已被模糊,可擴展的數據聯系使得隱私的保護更加困難。過去傳統的安全防護工作,是先紮好籬笆、築好牆,等待「黑客」的攻擊,我們雖然不知道下一個「黑客」是誰,但我們一定知道,它是通過尋求新的漏洞,從前面逐層進入。守方在明處,但相比攻方有明顯的壓倒性優勢。而在大數據時代,任何人都可以是信息的提供者和維護者,這種由先天的結構性導入設計所帶來的變化,你很難知道「它」從哪裡進來,「哪裡」才是前沿。這種變化,使得攻、防雙方的力量對比的不對等性大大下降。
同時,由於這種不對等性的降低,在我們用數據挖掘和數據分析等大數據技術獲取有價值信息的同時,「黑客」也可以利用這些大數據技術發起新的攻擊。「黑客」會最大限度地收集更多有用信息,比如社交網路、郵件、微博、電子商務、電話和家庭住址等信息,大數據分析使「黑客」的攻擊更加精準。此外,「黑客」可能會同時控制上百萬台傀儡機,利用大數據發起僵屍網路攻擊。
【解決方案】 面對大數據所帶來新的安全問題,有針對性地更新安全防護手段,增加新型防護手段,混合生產數據和經營數據,多種業務流並行,增加特徵標識建設內容,增強對數據資源的管理和控制。
挑戰六:大數據網路的相對開放性使得安全加固策略的復雜性有所降低
在大數據環境下,數據的使用者同時也是數據的創造者和供給者,數據間的聯系是可持續擴展的,數據集是可以無限延伸的,上述原因就決定了關於大數據的應用策略要有新的變化,並要求大數據網路更加開放。大數據要對復雜多樣的數據存儲內容做出快速處理,這就要求很多時候,安全管理的敏感度和復雜度不能定得太高。此外,大數據強調廣泛的參與性,這將倒逼系統管理者調低許多策略的安全級別。
當然,大數據的大小也影響到安全控制措施能否正確地執行,升級速度無法跟上數據量非線性增長的步伐,就會暴露大數據安全防護的漏洞。
【解決方案】 使用更加開放的分布式部署方式,採用更加靈活、更易於擴充的信息基礎設施,基於威脅特徵建立實時匹配檢測,基於統一的時間源消除高級可持續攻擊(APT)的可能性,精確控制大數據設計規模,削弱「黑客」可以利用的空間。
大數據時代已經到來,大數據已經產生出巨大影響力,並對我們的社會經濟活動帶來深刻影響。充分利用大數據技術來挖掘信息的巨大價值,從而實現並形成強有力的競爭優勢,必將是一種趨勢。面對大數據時代的六種安全挑戰,如果我們能夠予以足夠重視,採取相應措施,將可以起到未雨綢繆的作用。
以上是小編為大家分享的關於大數據安全的六大挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨
C. 我國擬立法應對「大數據殺熟」,你遇到過哪些大數據殺熟案例
大數據殺熟現象由於涉及到平台的壟斷行為,因此國家把大數據殺熟行為列為一種非法的犯罪行為。因為各大平台利用大數據對消費者進行分析以及分類,那麼就會導致消費者的各種各樣的行為就會完全的被各大演算法所監控,沒有任何的私人隱私可言,而且自己的任何消費習慣將完全地被智能機器人掌控。
從這兩個案例當中,我們就可以得知,現在大數據殺熟現象已經非常普遍,而且給消費者造成了非常嚴重的傷害,因此國家才會完善法律,只有這樣才能保障更多消費者的合法權益,如果自己在這方面被大數據演算法侵犯了個人隱私以及個人利益。
我認為可以通過法律的手段來進行維權,只有這樣才能保證自己的合法權益不被侵犯,生活在互聯網信息時代,自己的維權意識也要增強,這樣才能讓我們的生活不被演算法計算。
D. 當前時代,信息泄露有多恐怖!
惡意程序、各類釣魚和欺詐繼續保持高速增長,同時黑客攻擊和大規模的個人信息技術竊取頻發,與各種網路攻擊大幅增長相伴的,是大量網民個人信息的被技術性竊取與財產損失的不斷增加。目前信息安全「黑洞門"已經到觸目驚心的地步,網站攻擊與技術竊取正在向批量化、規模化方向發展,用戶隱私和權益遭到侵害,特別是一些重要數據甚至流向他國,不僅是個人和企業,信息安全威脅已經上升至國家安全層面。