導航:首頁 > 數據處理 > 大數據怎麼算輔助

大數據怎麼算輔助

發布時間:2024-12-09 14:33:30

大數據賦能:如何利用大數據驅動,精細化運營

互聯網時代,很明顯的一個特徵就是大多數信息都是以數據的形式進行記錄,大數據的產生,簡化了人們對世界的認知。通過將人的行為轉化成無數個可以量化的數據節點,從而為人提供了一個「數據畫像」。

大數據等技術的出現,給平台提供多樣化的營銷渠道,比如千人千面的商品推薦,C2M式的需求定製等。類似這樣的大數據應用,既能提高用戶體驗又能提昇平台效率。

1、大數據時代,數據如何驅動運營 

在大數據的驅動下,呈現給用戶的內容都是經過演算法精密篩選的。

當你打開資訊類APP時,演算法根據你的歷史瀏覽類別算出你的閱讀偏好,據此向你推薦內容;當你打開短視頻APP時,你刷到的視頻都是你感興趣並且關注的標簽內容;當你使用打車軟體時,演算法給你推薦你可能會選擇的計程車和價格……

經過演算法推薦,用戶閱讀到的都是自己感興趣或與自己生活圈子相關的信息內容,不感興趣或者觀點相左的內容會被演算法過濾。

2、大數據識別有價值信息,輔助決策 

對於大數據來說,它不僅面臨著如何識別一些重要的信息,而且還要將這些用於決策。

目前業內對於大數據的分析更多地注重在數據識別、儲存、定性描述相關分析等領域。

數據分析的優點不在於「大」,而在於「准」,尤其在這個信息量大的時代,採用哪些數據進行分析,從而得出更准確的結論則更重要。

3、大數據連接、賦能、跨行業數字化 

通過數據對不同行業賦能,幫助不同行業進行數據價值挖掘。傳統行業和數據行業結合的點在於將線上和線下的資源打通。例如新零售在大數據的賦能下,將廣告和營銷做結合,能夠清晰的看到你的用戶長成什麼樣。

4、如何解讀數據成了非常重要的技能 

互聯網時代,人人都在說大數據、數據分析、數據運營。數據是為你的工作提供反饋和指導的工具,數據會告訴你問題出在哪裡;你想達到一個運營推廣目標,數據會告訴你途徑和方法。

5、企業如何利用大數據分析精準運營 

無疑,大數據時代,數據資產已成為企業的核心競爭力。但數據在手,不會運用它,就會變得沒有價值。在當下企業數字化浪潮中,數據是企業轉型的基礎元素,如何將企業不同業務、類型的數據應用起來,推動企業運營,增加收入、降低成本、提高效率,控制風險等,是很多企業面臨的難點。

數據對運營的重要性已不言而喻,互聯網平台更是以數據驅動運營。產品研發從立項開始已經受到數據的驅動,而運營過程中的產品設計優化、市場渠道推廣、用戶需求、用戶行為和用戶價值等運營活動更離不開數據。

那麼,數據從何而來呢?

構建數據需求: 構建平台關心的數據需求,圍繞著用戶的需求展開,通過數據賣點制定重要事件的採集。可以從數據上,明確看到你的用戶增加、流失、渠道來源,從而幫助你做更好的數據管理,提升投放效率。

數據報表呈現: 數據採集完之後通過動態計算,形成報表,了解你關心數據的升降,你的運營、產品是否有效提升,都能在報表數據得到體現。

在精細化運營的大背景下,學會用數據分析來弄清用戶從哪來、對什麼感興趣、為什麼流失尤為重要。

01、用戶分群,尋找更多的核心用戶

用戶分群本質來上來說,就是將用戶分割成很多的群體,詳細的看每個群體用戶特徵。最經典的用戶模型是R(最近購買時間)F(頻次)M(消費金額),三個維度畫出九宮格立體的象限,了解你最高價值客戶的分布和特徵,輔助你進行決策。同時,通過高活躍核心用戶的運營,能夠幫助你理解你的客戶。

02、營銷轉化漏斗分析

互聯網營銷就像個漏斗,線上曝光後,客戶在瀏覽所發布的內容時,被層層過濾和篩選,沒有需求的、與目標客群不符的都會離開,直到意向客戶的預約。

03、客戶瀏覽來源分析

互聯網營銷要在線上的各個渠道曝光,建立線上營銷矩陣,官網、APP、公眾號、小程序、朋友圈等等,哪個渠道的推廣效果好,客戶瀏覽多,對後期的投放具有非常重要的指導意義,更好的發揮自身的優勢,同時彌補短板。

互聯網運營是個循序漸進的過程,大數據分析可以幫助你加快和不斷完善這個過程。我們來看看中移互聯網大數據如何通過大數據技術分析,真正從數據「觸摸」獲得實際價值。

中移互聯網大數據平台-利用數據驅動運營

中移互聯網大數據產品有數通過專業的SDK數據採集,經過大數據平台服務分析,提供專業的運營數據分析、用戶畫像分析、渠道分析、以及自定義事件分析等,實現數據化管理與運營。

幫助企業洞察用戶畫像和行為,根據用戶畫像結合實時用戶數據,精準定位目標用戶,實時了解用戶行為變化,從中發現用戶需求的改變,及時調整運營策略,降低業務推廣成本,實現效益最大化。

幫助企業隨時掌握各項數據,包括應用分析和網頁分析(含H5),提供全面准確的運營分析、用戶分析、渠道分析等系列服務,並輸出相應的數據報表。完美的解決了企業無法獲取應用或網頁運營分析數據、無法分析渠道投放效果、無法統計應用收入情況等疑難問題。

㈡ 如何利用大數據工具,輔助教師教學

無論你是在千禧年出生,還是在嬰兒潮時期降臨這個世界,今日的課堂與我們兒時的課堂相比,已經非常不同。
今日的小孩一上學就有平板電腦或者筆記本電腦,很多小孩拿到電腦時甚至還不能識字。一些國家為了讓學生適應基於電腦的標准化測試,要求二年級的學生必須具備每分鍾輸入60個單詞的能力。現在的小孩上學前就已經有姓名、住址、出生日期、醫學和行為記錄等數字記錄。
在課堂上應用技術和大數據的設想已經成為現實,並且正以非常快的速度在發展,快到我們都無法預測未來幾年內孩子們接受的規范教育將會變成怎樣。這是我們的生活已經離不開大數據的又一證據。但當這個事情發生在我們孩子的教育上時,到底是好事還是壞事呢?
形成反饋閉環和大數據在教育中的益處
就教育而言,最重要的地方一直都是形成反饋閉環。教師提出一個問題,然後學生嘗試去解決問題。從學生嘗試解決問題的行為中,教師可以發現學生理解了哪些內容,以及哪些內容是不理解的,然後再基於此對教學行為作出相應的調整。同樣的,學生在嘗試解決問題的過程中,也能加深對問題的理解。
這個閉環在一對一或者是師生人數比率較低的情況下,非常有效,但是當學生數量過多,同時不同學生之間的水平存在差異之時,要想創建這種有效的閉環就變得異常困難。這時大數據和技術就可以發揮作用了。
任何一名教師都可以帶著學生學一門課程,但是要做到對每個學生具體的問題進行精準定位,就沒有那麼容易了,尤其是在班級學生數量較大的情況下。一家名為Knewton的大數據公司開發了一個數字平台,該平台分析了幾百萬學生(從幼兒園到大學)的學習過程,並基於這一分析來設計更加合理的測試題目和更加個性化課程目標。最近,該公司與Houghton Mifflin Harcourt建立了合作關系,開發出了K-12階段的個性化數學課程,同時還與法國創業公司Gutenberg Technology一道,開發了智能數字教科書。
簡單來說,這些課程和教科書能夠適應每個學生的差異。該程序可以根據學生的表現,判斷當前的題目的難度是否過大,是否太容易,還是剛剛好?然後,基於判斷實時的改變題目的難度。學生可以按照自己的節奏來控制學習進度,而不會受到周圍其他學生的行為的影響。然後,系統會給教師一個反饋,告知哪個學生在哪個方面有困難,同時給出全班學生的表現的整體分析數據。
那麼,這種教學方法有什麼缺點嗎?
大數據教育的阻礙
與其它所有使用大數據的應用一樣,在教育中使用大數據也有人表示出不理解和擔憂。人們最常擔心的問題就是數據泄露,而且這種事情已經發生過了。2009年的時候,美國田納西州的一個學區由於疏忽,將18000名K-12階段學生的姓名、住址、出生日期和完整的社保號碼暴露在了一個不安全的伺服器上,而且整個過程持續了數月。
人們的另一個擔憂是,這些數據會像以前學校曾經使用的神秘的「永久性檔案」一樣,一直伴隨學生的整個教育生涯。畢竟,一個學生在小學時被標記為「搗蛋鬼」,並不代表他上了中學之後還是「搗蛋鬼」,反而可能會變成另外一個完全不一樣的人。但是,由於他的數字檔案里依然標記其為「搗蛋鬼」,學校當局和老師可能會基於這個過去的評價來對待已經改變的學生,這顯然不合適。
另外一些團體還擔心,這些學生的數據將被用於商業營銷。理論上講,學校和大數據軟體開發商確實可以在特定的領域,向學生精準投放個性化廣告。或許,學生寫了一篇關於棒球的論文,然後就會收到關於當地棒球比賽的門票廣告。
教師角色的轉變
所有涉及數據的領域,從財經到零售業都會遇到這些擔憂和阻礙,但是在教育領域使用大數據還有另外一個問題——教師角色的轉變。隨著越來越多的技術和數據應用投入的教學中,教師的角色也應該隨之發生轉變,即由教學角色向數據驅動的管理角色轉變。然而,這是一個非常困難的過程。
優秀的教師選擇成為教師,主要是因為他們熱衷於教育學生。他們喜歡看到學生理解了一個問題之後,兩眼放光的樣子。他們也喜歡學生沉浸在一個知識點的時候,釋放出的熱情。不幸的是,這些優秀的教師對於讓演算法接管這一切感到不樂意,他們也不願意做一些數據輸入和管理工作,雖然這一切或許最終都能幫助學生走向卓越。
因此,大數據和技術或許並不是解決教育問題的靈丹妙葯。我相信,我們應該開發出一些應用來輔助優秀的教師進行教學,而不是用大數據和數據分析替代他們。最終,理解和應用數據及其分析過程,將像在其他行業一樣,讓學生和教師都從中獲得益處。
不知道各位如何看待這個問題,我們應該用數據記錄和分析學生在課堂上的一切表現嗎?還是我們應該保持傳統教學方式,讓大數據靠邊站?

㈢ 關於大數據分析的四個關鍵環節

關於大數據分析的四個關鍵環節
隨著大數據時代的到來,AI 概念的火熱,人們的認知有所提高。為什麼說大數據有價值 這是不是只是一個虛的概念 大家怎麼考慮數據驅動問題 為什麼掌握更多的數據就會更有效 這些問題很難回答,但是,大數據絕不是大而空洞的。
資訊理論之父香農曾表示,信息是用來消除不信任的東西,比如預測明天會不會下雨,如果知道了今天的天氣、風速、雲層、氣壓等信息,有助於得出更准確的結論。所以大數據是用來消除不確定性的,掌握更多的有效數據,可以驅動企業進行科學客觀的決策。桑文鋒對大數據有著自己的理解,數據採集遵循「大」、「全」、「細」、「時」四字法則。「大」強調宏觀的「大」,而非物理的「大」。大數據不是一味追求數據量的「大」。比如每天各地級市的蘋果價格數據統計只有 2MB,但基於此研發出一款蘋果智能調度系統,就是一個大數據應用,而有些數據雖然很大,卻價值有限;「全」強調多種數據源。大數據採集講求全量,而不是抽樣。除了採集客戶端數據,還需採集服務端日誌、業務資料庫,以及第三方服務等數據,全面覆蓋,比如美國大選前的民意調查,希拉里有70%以上勝算,但是川普成為了美國總統,因為采樣數據有偏差,支持川普的底層人民不會上網回復。「細」強調多維度數據採集,即把事件的維度、屬性、欄位等都進行採集。如電商行業「加入購物車」的事件,除了採集用戶的 click 數據,還應採集用戶點擊的是哪個商品、對應的商戶等數據,方便後續交叉分析。「時」強調數據的時效性。顯然,具有時效性的數據才有參考價值。如國家指數,CPI 指數,月初收集到信息和月中拿到信息,價值顯然不同,數據需要實時拿到,實時分析。從另一個視角看待數據的價值,可以分為兩點,數據驅動決策,數據驅動產品智能。數據的最大價值是產品智能,有了數據基礎,再搭建好策略演算法,去回灌產品,提升產品本身的學習能力,可以不斷迭代。如今日頭條的新聞推薦,網路搜索的搜索引擎優化,都是數據驅動產品智能的體現。

數據分析四個關鍵環節 桑文鋒把數據分析分為四個環節,數據採集、數據建模、數據分析、指標。他提出了一個觀點,要想做好數據分析,一定要有自底向上的理念。很多公司的數據分析自頂向下推動,用業務分析指標來決定收集什麼數據,這是需求驅動工程師的模式,不利於公司長久的數據採集。而一個健康的自底向上模式,可以幫助公司真正建立符合自己業務的數據流和數據分析體系。 一、數據採集 想要真正做好大數據分析,首先要把數據基礎建好,核心就是「全」和「細」。 搜集數據時不能只通過 APP 或客戶端收集數據,伺服器的數據、資料庫數據都要同時收集打通,收集全量數據,而非抽樣數據,同時還要記錄相關維度,否則分析業務時可能會發現歷史數據不夠,所以不要在意數據量過大,磁碟存儲的成本相比數據積累的價值,非常廉價。 常見的數據採集方式歸結為三類,可視化/全埋點、代碼埋點、數據導入工具。

第一種是可視化/全埋點,這種方式不需要工程師做太多配合,產品經理、運營經理想做分析直接在界面點選,系統把數據收集起來,比較靈活。但是也有不好的地方,有許多維度信息會丟失,數據不夠精準。第二種是代碼埋點,代碼埋點不特指前端埋點,後端伺服器數據模塊、日誌,這些深層次的都可以代碼埋點,比如電商行業中交易相關的數據可以在後端採集。代碼埋點的優勢是,數據更加准確,通過前端去採集數據,常會發現數據對不上,跟自己的實際後台數據差異非常大。可能有三個原因:第一個原因是本身統計口徑不一樣,一定出現丟失;第二點是流量過大,導致數據丟失異常;第三點是SDK兼容,某些客戶的某些設備數據發不出去,導致數據不對稱。而代碼埋點的後台是公司自己的伺服器,自己核心的模擬可以做校準,基本進行更准確的數據採集。第三種是通過導入輔助工具,將後台生成的日誌、數據表、線下數據用實時批量方式灌到裡面,這是一個很強的耦合。數據採集需要採集數據和分析數據的人共同參與進來,分析數據的人明確業務指標,並且對於數據的准確性有敏感的判斷力,採集數據的人再結合業務進行系統性的採集。二、數據建模很多公司都有業務資料庫,裡面存放著用戶注冊信息、交易信息等,然後產品經理、運營人員向技術人員尋求幫助,用業務資料庫支持業務上的數據分析。但是這樣維護成本很高,且幾千萬、幾億條數據不能很好地操作。所以,數據分析和正常業務運轉有兩項分析,數據分析單獨建模、單獨解決問題。數據建模有兩大標准:易理解和性能好。數據驅動不是數據分析師、資料庫管理員的專利,讓公司每一個業務人員都能在工作中運用數據進行數據分析,並能在獲得秒級響應,驗證自己的新點子新思維,嘗試新方法,才是全員數據驅動的健康狀態。多維數據分析模型(OLAP)是用戶數據分析中最有效的模型,它把用戶的訪問數據都歸類為維度和指標,城市是維度,操作系統也是維度,銷售額、用戶量是指標。建立好多維數據分析模型,解決的不是某個業務指標分析的問題,使用者可以靈活組合,滿足各種需求。三、數據分析數據分析支持產品改進產品經理在改進產品功能時,往往是拍腦袋靈光一現,再對初級的點子進行再加工,這是不科學的。《精益創業》中講過一個理念,把數據分析引入產品迭代,對已有的功能進行數據採集和數據分析,得出有用的結論引入下一輪迭代,從而改進產品。在這個過程中大數據分析很關鍵。Facebook 的創始人曾經介紹過他的公司如何確定產品改進方向。Facebook 採用了一種機制:每一個員工如果有一個點子,可以抽樣幾十萬用戶進行嘗試,如果結果不行,就放棄這個點子,如果這個效果非常好,就推廣到更大范圍。這是把數據分析引入產品迭代的科學方法。桑文鋒在 2007 年加入網路時,也發現了一個現象,他打開郵箱會收到幾十封報表,將網路知道的訪問量、提問量、回答量等一一介紹。當網路的產品經理提出一個需求時,工程師會從數據的角度提出疑問,這個功能為什麼好 有什麼數據支撐 這個功能上線時如何評估 有什麼預期數據 這也是一種數據驅動產品的體現。數據驅動運營監控運營監控通常使用海盜模型,所謂的運營就是五件事:觸達是怎麼吸引用戶過來;然後激活用戶,讓用戶真正變成有效的用戶;然後留存,提高用戶粘性,讓用戶能停留在你的產品中不斷使用;接下來是引薦,獲取用戶這么困難,能不能發動已有的用戶,讓已有用戶帶來新用戶,實現自傳播;最後是營收,做產品最終要賺錢。要用數據分析,讓運營做的更好。數據分析方法互聯網常見分析方法有幾種,多維分析、漏斗分析、留存分析、用戶路徑、用戶分群、點擊分析等等,不同的數據分析方法適用於不同的業務場景,需要自主選擇。舉個多維分析的例子,神策數據有一個視頻行業的客戶叫做開眼,他們的軟體有一個下載頁面,運營人員曾經發現他們的安卓 APP 下載量遠低於 iOS,這是不合理的。他們考慮過是不是 iOS 用戶更願意看視頻,隨後從多個維度進行了分析,否定了這個結論,當他們發現某些安卓版本的下載量為零,分析到屏幕寬高時,看出這個版本下載按鈕顯示不出來,所以下載比例非常低。就這樣通過多維分析,找出了產品改進點。舉個漏斗分析的例子,神策數據的官網訪問量很高,但是注冊-登錄用戶的轉化率很低,需要進行改進。所以大家就思考如何把轉化漏斗激活地更好,後來神策做了小的改變,在提交申請試用後加了一個查看登錄頁面,這樣用戶收到賬戶名密碼後可以隨手登錄,優化了用戶體驗,轉化率也有了可觀的提升。四、指標如何定義指標 對於創業公司來說,有兩種方法非常有效:第一關鍵指標法和海盜指標法。第一關鍵指標法是《精益數據分析》中提出的理論,任何一個產品在某個階段,都有一個最需要關注的指標,其他指標都是這個指標的衍生,這個指標決定了公司當前的工作重點,對一個初創公司來說,可能開始關注日活,圍繞日活又擴展了一些指標,當公司的產品成熟後,變現就會成為關鍵,凈收入(GMV)會變成第一關鍵指標。

閱讀全文

與大數據怎麼算輔助相關的資料

熱點內容
海鮮產品退貨怎麼處理 瀏覽:704
股權託管交易什麼意思 瀏覽:542
什麼程序寫app簡單 瀏覽:299
為什麼牛市場大跌 瀏覽:419
如何將數據去掉重復 瀏覽:530
mc取消數據顯示按什麼鍵 瀏覽:602
平價減肥產品有哪些 瀏覽:409
賽車3數據包放哪裡 瀏覽:268
銷售數據如何聯網 瀏覽:52
修改硬碟數據需要哪些 瀏覽:351
plc怎麼編輯數據子程序 瀏覽:796
江蘇化妝品代理怎麼找 瀏覽:947
ktv需要話筒信息去哪裡找 瀏覽:223
船上指定人員要了解什麼程序 瀏覽:452
高考英語閱讀理解背景信息是什麼 瀏覽:10
保險代理客戶怎麼做 瀏覽:366
夢幻西遊怎麼交易祥瑞 瀏覽:381
製造雷達運用到的是什麼生物技術 瀏覽:861
民生股票可以在哪個手機軟體交易 瀏覽:415
資料庫緩存如何清除 瀏覽:869