⑴ 大數據時代已經到來,什麼是大數據
大數據時代已經到來,什麼是大數據
大數據時代已經到來,你了解嗎?什麼是大數據?一、大數據出現的背景進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的證券公司等寫進了投資推薦報告。數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然現在企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識 到數據對企業的重要性。大數據時代對人類的數據駕馭能力提出了新的挑戰,也為人們獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的 挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日, 卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量,大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。二、什麼是大數據?信息技術領域原先已經有「海量數據」、「大規模數據」等概念,但這些概念只著眼於數據規模本身,未能充分反映數據爆發背景下的數據處理與應用需求,而「大數據」這一新概念不僅指規模龐大的數據對象,也包含對這些數據對象的處理和應用活動,是數據對象、技術與應用三者的統一。1、大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據對象既可能是實際的、有限的數據集合,如某個政府部門或企業掌握的資料庫,也可能是虛擬的、無限的數據集合,如微博、微信、社交網路上的全部信息。大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,「大數據」指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。亞馬遜網路服務(AWS)、 大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。研發小組對大數據的定義:「大數據是最大的 宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。」Kelly說:「大數據是可能不包含所有的 信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。3、大數據應用,是 指對特定的大數據集合,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務 需求、數據集合和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才 能充分實現大數據的價值。當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。三、大數據的類型和價值挖掘方法1、大數據的類型大致可分為三類:1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。2、大數據挖掘商業價值的方法主要分為四種:1)客戶群體細分,然後為每個群體量定製特別的服務。2)模擬現實環境,發掘新的需求同時提高投資的回報率。3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。4)降低服務成本,發現隱藏線索進行產品和服務的創新。四、大數據的特點業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:1、是數據體量巨大數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量; 網路資料表明,其新首頁導航每天需要提供的數據超過1.5PB(1PB=1024TB),這些數據如果列印出來將超過5千億張A4紙。有資料證實,到目前 為止,人類生產的所有印刷材料的數據量僅為200PB。2、是數據類別大和類型多樣數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化 數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。3、是處理速度快在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。4、是價值真實性高和密度低數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。以視頻為例,一小時的視頻,在不間斷的監控過程中,可能有用的數據僅僅只有一兩秒。五、大數據的作用1、對大數據的處理分析正成為新一代信息技術融合應用的結點移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。大數據具有催生社會變革的能量。但釋放這種能量,需要嚴謹的數據治理、富有洞見的數據分析和激發管理創新的環境(Ramayya Krishnan,卡內基·梅隆大學海因茲學院院長)。2、大數據是信息產業持續高速增長的新引擎面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。3、大數據利用將成為提高核心競爭力的關鍵因素各 行各業的決策正在從「業務驅動」 轉變「數據驅動」。對大數據的分析可以使零售商實時掌握市場動態並迅速做出應對;可以為商家制定更加精準有效的營銷策略提供決策支持;可以幫助企業為消費 者提供更加及時和個性化的服務;在醫療領域,可提高診斷准確性和葯物有效性;在公共事業領域,大數據也開始發揮促進經濟發展、維護社會穩定等方面的重要作 用。4、大數據時代科學研究的方法手段將發生重大改變例如,抽樣調查是社會科學的基本研究方法。在大數據時代,可通過實時監測、跟蹤研究對象在互聯網上產生的海量行為數據,進行挖掘分析,揭示出規律性的東西,提出研究結論和對策。六、大數據的商業價值1、對顧客群體細分「大數據」可以對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。瞄準特定的顧客群體來進行營銷和服務是商家一直以來的追求。雲存儲的海量數據和「大數據」的分析技術使得對消費者的實時和極端的細分有了成本效率極高的可能。2、模擬實境運用「大數據」模擬實境,發掘新的需求和提高投入的回報率。現在越來越多的產品中都裝有感測器,汽車和智能手機的普及使得可收集數據呈現爆炸性增長。Blog、Twitter、Facebook和微博等社交網路也在產生著海量的數據。雲計算和「大數據」分析技術使得商家可以在成本效率較高的情況下,實時地把這些數據連同交易行為的數據進行儲存和分析。交易過程、產品使用和人類行為都可以 數據化。「大數據」技術可以把這些數據整合起來進行數據挖掘,從而在某些情況下通過模型模擬來判斷不同變數(比如不同地區不同促銷方案)的情況下何種方案 投入回報最高。3、提高投入回報率提高「大數據」成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。「大數據」能力強的部門可以通過雲計算、互聯網和內部搜索引擎把」大數據」成果和「大數據」能力比較薄弱的部門分享,幫助他們利用「大數據」創造商業價值。4、數據存儲空間出租企業和個人有著海量信息存儲的需求,只有將數據妥善存儲,才有可能進一步挖掘其潛在價值。具體而言,這塊業務模式又可以細分為針對個人文件存儲和針對企業用 戶兩大類。主要是通過易於使用的API,用戶可以方便地將各種數據對象放在雲端,然後再像使用水、電一樣按用量收費。目前已有多個公司推出相應服務,如亞 馬遜、網易、諾基亞等。運營商也推出了相應的服務,如中國移動的彩雲業務。5、管理客戶關系客戶管理應用的目的是根據客戶的屬性(包括自然屬性和行為屬性),從不同角度深層次分析客戶、了解客戶,以此增加新的客戶、提高客戶的忠誠度、降低客戶流失 率、提高客戶消費等。對中小客戶來說,專門的CRM顯然大而貴。不少中小商家將飛信作為初級CRM來使用。比如把老客戶加到飛信群里,在群朋友圈裡發布新 產品預告、特價銷售通知,完成售前售後服務等。6、個性化精準推薦在運營商內部,根據用戶喜好推薦各類業務或應用是常見的,比如應用商店軟體推薦、IPTV視頻節目推薦等,而通過關聯演算法、文本摘要抽取、情感分析等智能分 析演算法後,可以將之延伸到商用化服務,利用數據挖掘技術幫助客戶進行精準營銷,今後盈利可以來自於客戶增值部分的分成。以日常的「垃圾簡訊」為例,信息並不都是「垃圾」,因為收到的人並不需要而被視為垃圾。通過用戶行為數據進行分析後,可以給需要的人發送需要的信息,這樣「垃圾簡訊」就成了有價值的信息。在日本的麥當勞,用戶在手機上下載優惠券,再去餐廳用運營商DoCoMo的手機錢包優惠支付。運營商和麥當勞搜集相關消費信息,例如經常買什麼漢堡,去哪個店消費,消費頻次多少,然後精準推送優惠券給用戶。7、數據搜索數據搜索是一個並不新鮮的應用,隨著「大數據」時代的到來,實時性、全范圍搜索的需求也就變得越來越強烈。我們需要能搜索各種社交網路、用戶行為等數據。其商業應用價值是將實時的數據處理與分析和廣告聯系起來,即實時廣告業務和應用內移動廣告的社交服務。運營商掌握的用戶網上行為信息,使得所獲取的數據「具備更全面維度」,更具商業價值。典型應用如中國移動的「盤古搜索」。七、大數據對經濟社會的重要影響1、能夠推動實現巨大經濟效益比如對中國零售業凈利潤增長的貢獻,降低製造業產品開發、組裝成本等。預計2013年全球大數據直接和間接拉動信息技術支出將達1200億美元。2、能夠推動增強社會管理水平大數據在公共服務領域的應用,可有效推動相關工作開展,提高相關部門的決策水平、服務效率和社會管理水平,產生巨大社會價值。歐洲多個城市通過分析實時採集的交通流量數據,指導駕車出行者選擇最佳路徑,從而改善城市交通狀況。3、如果沒有高性能的分析工具,大數據的價值就得不到釋放對大數據應用必須保持清醒認識,既不能迷信其分析結果,也不能因為其不完全准確而否定其重要作用。1) 由於各種原因,所分析處理的數據對象中不可避免地會包括各種錯誤數據、無用數據,加之作為大數據技術核心的數據分析、人工智慧等技術尚未完全成熟,所以對 計算機完成的大數據分析處理的結果,無法要求其完全准確。例如,谷歌通過分析億萬用戶搜索內容能夠比專業機構更快地預測流感暴發,但由於微博上無用信息的 干擾,這種預測也曾多次出現不準確的情況。2)必須清楚定位的是,大數據作用與價值的重點在於能夠引導和啟發大數據應用者的創新思維,輔助決策。簡單而言,若是處理一個問題,通常人能夠想到一種方法,而大數據能夠提供十種參考方法,哪怕其中只有三種可行,也將解決問題的思路拓展了三倍。所以,客觀認識和發揮大數據的作用,不誇大、不縮小,是准確認知和應用大數據的前提。八、總結不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。1、從大數據的價值鏈條來分析,存在三種模式:1)手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。2)沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。3)既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。2、未來在大數據領域最具有價值的是兩種事物:1)擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2)還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。大 數據是信息技術與專業技術、信息技術產業與各行業領域緊密融合的典型領域,有著旺盛的應用需求、廣闊的應用前景。為把握這一新興領域帶來的新機遇,需要不 斷跟蹤研究大數據,不斷提升對大數據的認知和理解,堅持技術創新與應用創新的協同共進,加快經濟社會各領域的大數據開發與利用,推動國家、行業、企業對於 數據的應用需求和應用水平進入新的階段。
⑵ 什麼是大數據,通俗的講
大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產,簡單來說大數據就是海量的數據,就是數據量大、來源廣、種類繁多(日誌、視頻、音頻),大到PB級別,現階段的框架就是為了解決PB級別的數據。
大數據的7大特徵:海量性,多樣性,高速性,可變性,真實性,復雜性,價值性
隨著大數據產業的發展,它逐漸從一個高端的、理論性的概念演變為具體的、實用的理念。
很多情況下大數據來源於生活。
比如你點外賣,准備什麼時候買,你的位置在哪,商家位置在哪,想吃什麼……這都是數據,人一多各種各樣的信息就越多,還不斷增長,把這些信息集中,就是大數據。
大數據的價值並不是在這些數據上,而是在於隱藏在數據背後的——用戶的喜好、習慣還有信息。
⑶ 海量數據處理是什麼意思
所謂海量數據處理,無非就是基於海量數據上的存儲、處理、操作。何謂海量,就是數據量太大,所以導致要麼是無法在較短時間內迅速解決,要麼是數據太大,導致無法一次性裝入內存。
⑷ 什麼是大數據大數據具體有什麼用大數據到底能幹什麼
什麼是大數據?
一句話快答:一是大數據是一個很大的海量的數據集;二是指的新型處理海量數據的技術體系。
大數據是一個抽象的概念,可以簡單理解為"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。
大數據有什麼價值?
一句話快答:將海量數據價值化。
大數據的核心作用是數據價值化,簡單地說就是大數據讓數據產生各種「價值」,這個將數據價值化的過程就是大數據要做的主要事情。
大數據有哪些作用?
一句話快答:給人類提供輔助服務,為智能體提供決策服務。
大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合。具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。通俗地講「大數據就像互聯網+,可以應用在各行各業",如電信、金融、教育、醫療、軍事、電子商務甚至政府決策等。
對企業而言,大數據可提高工作效率,降低企業成本,精準營銷帶來更多客戶。
對政府而言,可以利用大數進行統籌分析、提高管理效率、管理抓獲犯罪分子等。
對個人而言,可以利用大數據更了解自己等。加米穀大數據培訓。
⑸ 大數據與海量數據的區別
大數據與海量數據的區別
如果僅僅是海量的結構性數據,那麼解決的辦法就比較的單一,用戶通過購買更多的存儲設備,提高存儲設備的效率等解決此類問題。然而,當人們發現資料庫中的數據可以分為三種類型:結構性數據、非結構性數據以及半結構性數據等復雜情況時,問題似乎就沒有那麼簡單了。
大數據洶涌來襲
當類型復雜的數據洶涌襲來,那麼對於用戶IT系統的沖擊又會是另外一種處理方式。很多業內專家和第三方調查機構通過一些市場調查數據發現,大數據時代即將到來。有調查發現,這些復雜數據中有85%的數據屬於廣泛存在於社交網路、物聯網、電子商務等之中的非結構化數據。這些非結構化數據的產生往往伴隨著社交網路、移動計算和感測器等新的渠道和技術的不斷涌現和應用。
如今大數據的概念也存在著很多的炒作和大量的不確定性。為此,編者詳細向一些業內專家詳細了解有關方面的問題,請他們談一談,大數據是什麼和不是什麼,以及如何應對大數據等問題,將系列文章的形式與網友見面。
有人將多TB數據集也稱作」大數據」。據市場研究公司IDC統計,數據使用預計將增長44倍,全球數據使用量將達到大約35.2ZB(1ZB = 10億TB)。然而,單個數據集的文件尺寸也將增加,導致對更大處理能力的需求以便分析和理解這些數據集。
EMC曾經表示,它的1000多個客戶在其陣列中使用1PB(千兆兆)以上的數據數據,這個數字到2020年將增長到10萬。一些客戶在一兩年內還將開始使用數千倍多的數據,1EB(1艾位元組 = 10億GB)或者更多的數據。
對大企業而言,大數據的興起部分是因為計算能力可用更低的成本獲得,且各類系統如今已能夠執行多任務處理。其次,內存的成本也在直線下降,企業可以在內存中處理比以往更多的數據,另外是把計算機聚合成伺服器集群越來越簡單。IDC認為,這三大因素的結合便催生了大數據。同時,IDC還表示,某項技術要想成為大數據技術,首先必須是成本可承受的,其次是必須滿足IBM所描述的三個」V」判據中的兩個:多樣性(variety)、體量(volume)和速度(velocity)。
多樣性是指,數據應包含結構化的和非結構化的數據。
體量是指聚合在一起供分析的數據量必須是非常龐大的。
而速度則是指數據處理的速度必須很快。
大數據」並非總是說有數百個TB才算得上。根據實際使用情況,有時候數百個GB的數據也可稱為大數據,這主要要看它的第三個維度,也就是速度或者時間維度。
Garter表示,全球信息量正在以59%以上的年增長率增長,而量是在管理數據、業務方面的顯著挑戰,IT領袖必須側重在信息量、種類和速度上。
量:企業系統內部的數據量的增加是由交易量、其它傳統數據類型和新的數據類型引發的。過多的量是一個存儲的問題,但過多的數據也是一個大量分析的問題。
種類:IT領袖在將大量的交易信息轉化為決策上一直存在困擾 – 現在有更多類型的信息需要分析 – 主要來自社交媒體和移動(情景感知)。種類包括表格數據(資料庫)、分層數據、文件、電子郵件、計量數據、視頻、靜態圖像、音頻、股票行情數據、金融交易和其它更多種類。
速度:這涉及到數據流、結構化記錄的創建,以及訪問和交付的可用性。速度意味著正在被生成的數據有多快和數據必須被多快地處理以滿足需求。
雖然大數據是一個重大問題,Gartner分析師表示,真正的問題是讓大數據更有意義,在大數據裡面尋找模式幫助組織機構做出更好的商業決策。
諸子百家談如何定義」大數據」
盡管」Big Data」可以翻譯成大數據或者海量數據,但大數據和海量數據是有區別的。
定義一:大數據 = 海量數據 + 復雜類型的數據
Informatica中國區首席產品顧問但彬認為:」大數據」包含了」海量數據」的含義,而且在內容上超越了海量數據,簡而言之,」大數據」是」海量數據」+復雜類型的數據。
但彬進一步指出:大數據包括交易和交互數據集在內的所有數據集,其規模或復雜程度超出了常用技術按照合理的成本和時限捕捉、管理及處理這些數據集的能力。
大數據是由三項主要技術趨勢匯聚組成:
海量交易數據:在從 ERP應用程序到數據倉庫應用程序的在線交易處理(OLTP)與分析系統中,傳統的關系數據以及非結構化和半結構化信息仍在繼續增長。隨著企業將更多的數據和業務流程移向公共和私有雲,這一局面變得更加復雜。海量交互數據:這一新生力量由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成。它包括了呼叫詳細記錄(CDR)、設備和感測器信息、GPS和地理定位映射數據、通過管理文件傳輸(Manage File Transfer)協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。海量數據處理:大數據的涌現已經催生出了設計用於數據密集型處理的架構,例如具有開放源碼、在商品硬體群中運行的 Apache Hadoop。對於企業來說,難題在於以具備成本效益的方式快速可靠地從 Hadoop 中存取數據。定義二:大數據包括A、B、C三個要素
如何理解大數據?NetApp 大中華區總經理陳文認為,大數據意味著通過更快獲取信息來使做事情的方式變得與眾不同,並因此實現突破。大數據被定義為大量數據(通常是非結構化的),它要求我們重新思考如何存儲、管理和恢復數據。那麼,多大才算大呢?考慮這個問題的一種方式就是,它是如此之大,以至於我們今天所使用的任何工具都無法處理它,因此,如何消化數據並把它轉化成有價值的洞見和信息,這其中的關鍵就是轉變。
基於從客戶那裡了解的工作負載要求,NetApp所理解的大數據包括A、B、C三個要素:分析(Analytic),帶寬(Bandwidth)和內容(Content)。
1. 大分析(Big Analytics),幫助獲得洞見 – 指的是對巨大數據集進行實時分析的要求,它能帶來新的業務模式,更好的客戶服務,並實現更好的結果。
2. 高帶寬(Big Bandwidth),幫助走得更快 – 指的是處理極端高速的關鍵數據的要求。它支持快速有效地消化和處理大型數據集。
3. 大內容(Big Content),不丟失任何信息- 指的是對於安全性要求極高的高可擴展的數據存儲,並能夠輕松實現恢復。它支持可管理的信息內容存儲庫、而不只是存放過久的數據,並且能夠跨越不同的大陸板塊。
大數據是一股突破性的經濟和技術力量,它為 IT 支持引入了新的基礎架構。大數據解決方案消除了傳統的計算和存儲的局限。藉助於不斷增長的私密和公開數據,一種劃時代的新商業模式正在興起,它有望為大數據客戶帶來新的實質性的收入增長點以及富於競爭力的優勢。
以上是小編為大家分享的關於大數據與海量數據的區別的相關內容,更多信息可以關注環球青藤分享更多干貨
⑹ 可以理解成大數據就是海量數據嗎
如果大數據僅僅是海量的結構性數據,那麼問題就簡單了!這些數據分析起來相對簡單,用戶通過購買更多的存儲設備,提高存儲設備的效率就能輕松搞定了。然而,今天的大數據不單純指數字和表格,還可能包括文本、日誌、網頁、圖像、音頻、視頻等,它們涵蓋的內容非常豐富,如博客和微博、音頻視頻分享、通話記錄、位置信息、點評信息、交易信息和互動信息等,包羅萬象。用術語表述就是:海量數據是結構化的,而大數據則包括了結構化數據、半結構化數據和非結構化數據,具備4V特徵。
⑺ 海量數據的公司簡介
海量數據是北京海量數據技術股份有限公司簡稱,創立於2007年,是中國領先的數據技術服務提供商,業務涵蓋數據技術的系統集成、技術服務和產品研發,旗下控股2家子公司:北京海量雲信息技術有限公司、海量雲圖(北京)數據技術有限公司。公司總部設在北京,在沈陽、濟南、上海、南京、武漢、廣州、深圳、成都、西安等多個城市設有辦事機構,海量數據自成立以來一直保持強勁發展勢頭,年均復合增長率超過35%。
海量數據在行業內率先提出了「專注數據,創造價值」的發展戰略和業務定位,並快速完成在數據技術產業鏈的布局,主要針對大中型企事業單位的數據中心,搭建IT基礎設施數據平台,提供相關的數據存儲與安全、資料庫與數據管理、雲計算等方面的解決方案和技術服務。隨著數據技術時代的來臨,數據已成為企業的核心資產和創新驅動力,海量數據憑借多年積累的實踐經驗,在電信、電網、銀行、保險、證券、流通、傳媒、汽車、家電、食品等行業獲得用戶及合作夥伴的良好商譽。
清晰的戰略、高效的執行和獨特的方法論,已逐步成為海量數據人的核心競爭力,並不斷創造了海量數據跨越式的發展奇跡。未來,海量數據將繼續秉承「以客戶為中心、專注數據技術」的經營理念和業務定位,堅決落實「VD139X」第三個3年業務發展規劃,加大對開源與雲計算、數據安全、大數據、企業級軟體等領域軟硬融合一體機技術自主研發,打造中國數據技術領域第一品牌。
⑻ 簡述什麼是大數據
大數據是指那些數據量特別大、數據類別特別復雜的數據集,這種數據集不能用傳統的資料庫進行轉存、管理和處理,是需要新處理模式才能具有更強大的決策力、洞察發現力和流程優化能力的海量、高增差率和多樣化的信息資產。
大數據的主要特點就是數據量大、數據處理速度快、數據真實性高、數據類別復雜等,它們合起來被稱為4大數據也可以應用在警察預測犯罪的發生、預測選舉結果,同時還能通過手機定位數據和交通數據建立城市規劃,現在醫療行業也在做大數據的分析。
(8)什麼是海量數據擴展閱讀:
社會發展速度非常快,科技也很發達,信息的流通和人們之間的交流也非常密切,而大數據就是這個時代高科技的產物。對於大部分行業而言,怎麼運用這些大規模數據是贏得競爭的關鍵,但同時,大數據在經濟發展中的意義不能取代一切對於社會問題的理性思考。
數據行業非常的受歡迎,人才需要求量也非常大,而且企業給大數據工程師的薪資比一般工程師的薪資也要高很多。
⑼ 海量數據的介紹
海量數據是北京海量數據技術股份有限公司的簡稱,創立於2007年,是中國領先的數據技術服務提供商,業務涵蓋數據技術的系統集成、技術服務和產品研發,旗下控股2家子公司:北京海量雲信息技術有限公司、海量雲圖(北京)數據技術有限公司。公司總部設在北京,在沈陽、濟南、上海、南京、武漢、廣州、深圳、成都、西安等多個城市設有辦事機構,海量數據自成立以來一直保持強勁發展勢頭,年均復合增長率超過35%。
⑽ 大數據與海量數據的特點
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
魔方(大數據模型平台)
大數據模型平台是一款基於服務匯流排與分布式雲計算兩大技術架構的一款數據分析、挖掘的工具平台,其採用分布式文件系統對數據進行存儲,支持海量數據的處理。採用多種的數據採集技術,支持結構化數據及非結構化數據的採集。通過圖形化的模型搭建工具,支持流程化的模型配置。通過第三方插件技術,很容易將其他工具及服務集成到平台中去。數據分析研判平台就是海量信息的採集,數據模型的搭建,數據的挖掘、分析最後形成知識服務於實戰、服務於決策的過程,平台主要包括數據採集部分,模型配置部分,模型執行部分及成果展示部分等。
大數據平台數據抽取工具
大數據平台數據抽取工具實現db到hdfs數據導入功能,藉助Hadoop提供高效的集群分布式並行處理能力,可以採用資料庫分區、按欄位分區、分頁方式並行批處理抽取db數據到hdfs文件系統中,能有效解決大數據傳統抽取導致的作業負載過大抽取時間過長的問題,為大數據倉庫提供傳輸管道。數據處理伺服器為每個作業分配獨立的作業任務處理工作線程和任務執行隊列,作業之間互不幹擾靈活的作業任務處理模式:可以增量方式執行作業任務,可配置的任務處理時間策略,根據不同需求定製。採用非同步事件驅動模式來管理和分發作業指令、採集作業狀態數據。通過管理監控端,可以實時監控作業在各個數據處理節點作業任務的實時運行狀態,查看作業的歷史執行狀態,方便地實現提交新的作業、重新執行作業、停止正在執行的作業等操作。
互聯網數據採集工具
網路信息雷達是一款網路信息定向採集產品,它能夠對用戶設置的網站進行數據採集和更新,實現靈活的網路數據採集目標,為互聯網數據分析提供基礎。
未至·雲(互聯網推送服務平台)
雲計算數據中心以先進的中文數據處理和海量數據支撐為技術基礎,並在各個環節輔以人工服務,使得數據中心能夠安全、高效運行。根據雲計算數據中心的不同環節,我們專門配備了系統管理和維護人員、數據加工和編撰人員、數據採集維護人員、平台系統管理員、機構管理員、輿情監測和分析人員等,滿足各個環節的需要。面向用戶我們提供面向政府和面向企業的解決方案。
顯微鏡(大數據文本挖掘工具)
文本挖掘是指從文本數據中抽取有價值的信息和知識的計算機處理技術, 包括文本分類、文本聚類、信息抽取、實體識別、關鍵詞標引、摘要等。基於Hadoop MapRece的文本挖掘軟體能夠實現海量文本的挖掘分析。CKM的一個重要應用領域為智能比對, 在專利新穎性評價、科技查新、文檔查重、版權保護、稿件溯源等領域都有著廣泛的應用。
數據立方(可視化關系挖掘)
大數據可視化關系挖掘的展現方式包括關系圖、時間軸、分析圖表、列表等多種表達方式,為使用者提供全方位的信息展現方式。