㈠ 中國實施大數據戰略有五大行動支點
中國實施大數據戰略有五大行動支點
大數據引擎業已成為組織創新、產業升級、經濟社會發展、國家治理能力現代化的核心驅動力。在借鑒歐美發達國家大數據戰略實施的先進經驗基礎上,中國中國實施大數據戰略有五大行動支點。
變革時代的大數據革命
自「智慧地球」概念於2008年11月提出以來,整個地球都沉浸在如何變得更加智慧這個龐大的課題里。聯合國秘書長執行辦公室於2009年正式啟動了「全球脈動」倡議項目,旨在推動數字數據與快速數據收集和分析方式創新。聯合國2012年5月對外發布了《大數據促發展:挑戰與機遇》白皮書,探討如何利用互聯網數據推動全球發展。隨著大數據發展戰略得到全球各國的高度重視,世界主要國家的「智慧國家」建設發展戰略和行動計劃風起雲涌。由於大數據是數字化生存時代的新型戰略資源,對國家治理和社會發展作用巨大,各國科技界、產業界和政府部門極為關注,於是「智慧企業」「智慧校園」「智慧醫院」「智慧政府」「智慧城市」被不同類型組織列為發展目標。
科學技術是第一生產力,產業的每一次革命性躍遷都離不開科技革命的推動,往往只有那些抓住技術革命的戰略機遇並迅速作出適應性調整的國家或民族才能不斷生存發展。毫無疑問,大數據是當前一個事關經濟社會發展全局的戰略性產業,已經成為全球高科技產業競爭的前沿領域,以美、日、歐為代表的全球發達國家已經展開以大數據為核心的新一輪信息戰略以及新一輪的人才競爭、技術競爭、產業競爭、企業競爭和國家競爭。報告顯示,2014年,全球大數據市場增長速度達53%,總體規模為285億美元。到2017年,全球大數據市場收入將達500億美元,這意味著從2011年起連續6年年復合增長率達38%。中國市場情報中心有關統計顯示,2012年中國大數據市場規模為4.5億元,同比增長40.6%,到2018年,中國大數據市場規模將達到463.4億元。2012—2013年度,在歐美國家1217家營業額收入超過10億美元的企業中,643家企業制定了大數據戰略,其中7%的企業至少投入了5億美元,15%的企業至少投入了1億美元發展大數據。
顯然,隨著經濟社會的發展,大數據帶來的深刻影響和巨大價值逐漸被認識,它通過技術的創新與發展,以及數據的全面感知、收集、分析、共享,為我們提供了一種全新的看待世界的方法,大數據帶來的信息風暴正在全方位地改變著我們的生活、工作和思維。
大數據戰略實施的國際經驗
歐美發達國家相繼制定了大數據發展戰略,並制訂了具體的實施政策和行動計劃,已經取得初步成效。總體而言,這些戰略具有以下幾個方面典型特徵:
開放性。自2009年美國政府開放數據門戶網站data.gov上線以來,各國政府掀起開放數據運動。通過開放政府數據,提高政府透明度,提升政府治理能力和效率,更好地滿足公眾需求,促進社會創新,帶動經濟增長。據統計,截至2014年1月12日,開放數據運動已覆蓋全球44個國家(地區)。2013年6月,八國集團首腦在北愛爾蘭峰會上簽署《開放數據憲章》,各國表示願意進一步向公眾開放可機讀的政府數據,並在2013年末制定相應的行動計劃。英國承諾2015年前開放有關交通運輸、天氣和健康方面的核心公共資料庫,並將投資1000萬英鎊建立世界上首個「開放數據研究所」。2013年11月,法國政府出台《八國集團開放數據憲章行動計劃》,作出「朝著默認公開發布數據的目標前進」「建立一個開放平台以鼓勵創新和提高透明度」等幾項承諾。
智能性。2010年11月,德國聯邦政府啟動「數字德國2015」戰略,推動互聯網服務、雲計算、物聯網、3D技術以及電動汽車信息通信技術等信息通訊產業的發展,推動實施基於傳統製造業智能化和數據化的「工業製造4.0戰略」,將物聯網引入製造業,打造智能工廠,工廠通過CPS(網路物理系統)實現在全球互聯。2011年,韓國就提出「智慧首爾2015」計劃,目標是到2015年成為世界上最方便使用智能技術的城市,建立與市民溝通的智能行政服務,建成適應未來生活的基礎設施和成為有創造力的智慧經濟都市。2013年6月,日本安倍內閣公布《面向2020年的ICT綜合戰略》,全面闡述2013-2020年期間以發展開放公共數據和大數據為核心的日本新IT國家戰略,提出要把日本建設成為一個具有「世界最高水準的廣泛運用信息產業技術的社會」的目標。
價值性。2012年4月,英國經濟與商業研究中心的一份研究報告預計了2012-2017年大數據產生的經濟利益:2011年英國私企和公共部門企業的數據資產價值為251億英鎊,2017年將達到407億英鎊。大數據增加的創新與就業機會,將貢獻價值240億英鎊,同時為小企業創造預計價值為420億英鎊的發展前景。該報告還預測大數據將創造新業務市場,即創造58000個就業機會。大數據可以更有效地改進客戶需求分析,預計此項優化將產生738億英鎊的效益。大數據可以優化產品存量和資源分配,大大降低成本,預計產生460億英鎊的效益。同時,政府部門通過大數據可對醫療保健系統進行防欺詐檢測和分析,預計節省不必要的支出達20億英鎊。顯然,如果有意識地在更大的合理范圍內開放大數據,大數據將帶來更多的價值增殖。
應用性。2012年9月,IBM公司啟動在加拿大安大略省巴里市興建智能數據中心,即IBM加拿大領導數據中心,旨在推進節能化數據中心管理方面的研究和為企業提供能使其連續性經營的服務以及災備數據服務。為響應公民對數據的需求,加拿大逐步開放地理空間數據,並將大數據研究列為政府科研基金重點資助對象。2013年8月,英國政府發布的《英國農業技術戰略》指出,英國今後對農業技術的投資將集中在大數據上,目標是將英國的農業科技商業化。
保障性。2012年5月,美國政府宣布投資2億美元提高大數據技術(包括數據的儲存、分析、收集),以加快科學研究、加強國家安全、改革教學和培訓體系以及促進專業人才發展。2013年1月,英國商業、創新和技能部宣布注資6億英鎊發展8類高新技術,其中,1.89億英鎊用來發展大數據技術。「歐盟開放數據戰略」將重點加強在數據處理技術、數據門戶網站和科研數據基礎設施三方面的投入,旨在歐洲企業與市民能自由獲取歐盟公共管理部門的所有信息,建立一個匯集不同成員國以及歐洲機構數據的「泛歐門戶」。
中國實施大數據戰略的行動支點
為了應對大數據戰略帶來的機遇和挑戰,借鑒歐美發達國家大數據戰略實施的先進經驗,我國需要在如下幾個方面下功夫:
完善制度。完善知識產權保護體系,促進數據共享和整合,推動數據價值創造。加快制定相關標准和指南,制定大數據發展戰略。出台法律,為涉及企業運營數據、客戶信息、個人隱私和各種行為的詳細記錄數據提供法律保障。完善信息資源市場,界定信息產權,明確信息的所有權、使用權和收益權的規定,發揮市場在信息資源方面的優化配置作用。
構築平台。成立大數據管理局,建立信息資源共享平台,開放政府信息資源。以部門業務信息為基礎,從標准、流程、數據三個方面進行設計,建設「物理分散、邏輯集中」的公共數據中心,通過數據集中挖掘,提高數據利用率,提高各級政府行政管理效率和公共服務水平。
突破技術。在明確大數據關鍵技術的基礎上,確定重點支持領域,加大研發支持力度,整合雲計算、物聯網等專項項目,支持大數據技術的開發、研究和應用示範,引導企業加大大數據研發力度,實現關鍵技術突破,特別需要優先支持大數據技術在輿情研判、疾病防治、災害控制、交通安全、城市管理、公共服務、社會治理等民生領域的應用。在公共服務和公用事業管理中采購大數據技術,以政府采購引導國內大數據發展。
培養人才。加大高水平大數據人才的引進和培養力度,重點培育數據挖掘、機器學習等方面的專業人才。制定激勵措施對企業管理者進行數據分析技術培訓,提高大型企業管理人員的數據分析能力。同時,在大學相應階段有針對性地增加相關大數據技術與分析課程,增加學生在感知技術、數據倉庫、數據搜索、數據挖掘與可視化等領域的知識積累,擴大人才儲備規模。
提供保障。設立大數據研發基金,加大大數據平台建設的投入力度,加強智慧企業、智慧醫院、智慧政府、智慧城市建設。設立獎懲制度,強化大數據國家安全建設。建立預算制度,控制各部門經費流向,推動數據共享,防止「信息孤島」現象的出現。
㈡ 不僅僅是大企業 小企業更需要大數據
不僅僅是大企業 小企業更需要大數據
大數據不僅僅是大企業可以利用,中小企業可以獲得同樣的回報。但中小企業不能像大型企業一樣構建大數據基礎設施。好消息是,他們沒有必要這么做,可以利用雲計算的計算能力。企業面臨的挑戰是如何在正確的時間獲取正確的數據到正確的雲。
大數據的價值
大數據可以有許多不同的形式,例如物聯網(IoT)設備,來自內部系統的日誌數據或來自多個傳統應用程序的數據的相關性。組織可以使用這些數據來幫助決策,解決問題或進行新產品設計。
大數據有兩個具體要求,而這兩個要求就排除了中小企業參與的可能。首先,在大多數情況下,大數據需要一個可擴展的存儲基礎設施來容納所有這些源代碼。其次,它需要一個可擴展的計算架構,以便數據集能夠被快速處理,以便進行近乎實時的決策。
雲計算面臨的難題
採用可擴展計算和存儲基礎設施的答案是採用公共雲,可以提供幾乎無限的數量。但雲端可能不是存儲數據的最理想的位置。數據具有引力,而需要擴展的能力,「減小」存儲是非常罕見的。其結果是將組織的所有數據在雲端中長期存儲的定期成本變得令人望而卻步。
此外,本地對象存儲提供了非常相似的管理和擴展容易性,同時隨著時間的推移而降低成本。
大數據處理的計算端進行擴展和縮小。通常有一個需要結果或答案的設定時刻,需要盡可能快地處理一系列數據,以便組織能作出決定。採用公共雲是理想的使用情況。
雲計算的優勢迫使許多組織也使用雲存儲,因此可以快速進行處理。因此,即使不願意,中小企業也被迫在雲端處理業務。
中小企業的雲計算
對於較大的應用數據集來說,理想的中小企業雲計算只是用來計算,數據在需要的基礎上載入,基本上將數據從本地存儲緩存到公共雲。該設計與典型的雲網關完全相反,其中大部分數據都在雲端中,活動數據緩存在本地部署的數據中心。中小企業的大數據雲保存數據,然後將數據臨時緩存到雲端進行處理。
中小型企業大數據雲也是獨一無二的,因為緩存必須比典型的先入後出技術更復雜。雖然這種方法對於默認操作來說是適用的,但中小企業需要覆蓋行為的能力,並通過緩存雲計算旁邊處理所需的數據來按需啟動計算需求。例如,一個小型獨立的研究機構可以利用無限的計算資源來支持授權周期,並在沒有基礎架構投資的情況下完成必要的工作。
當正確使用雲計算時,雲計算是一個很好的均衡器,使得中小企業能夠與大型企業一起進行市場競爭。然而,關鍵是中小型企業可以利用雲計算優化成本,並獲得最大價值。