❶ 一個小白學習學習數據分析師有多難
以下是一個文科生小白轉行數據分析的人生歷程,分享給你,相信可以幫助正處人生十字路口的朋友或正處於迷茫搖擺時期的人們一些啟發或借鑒。
1、在選擇數據分析師這條路之前,一定要思考再三,雖然這條路看著光鮮靚麗(至少職業的薪酬收入類比其他行業不會好不少),但也是一條艱難前行之路,充滿著未知、荊棘和困惑,尤其是對於文科出身的我,付出的努力更是一般理工男的好幾倍吧應該……
2、雖然數據分析這個行業有著天然的專業鄙視鏈(文理科的邏輯思維功底、編程語言接受程度上以及數理統計基礎實實在在的存在差別,這也是甲方更信賴理工科出身的重要原因,因為社科或文藝類專業,很少有學校會嚴格地按照數理邏輯去制定學生的課程培養計劃),但是並不代表文科生沒有任何機會,因為大學以前,其實我們都沒正式接觸過編程或統計學,大學本科更多的是提升一個人的思維、而不是過硬的專研能力。所以文科專業的朋友,興趣和決定也是重要因素,不能單單憑借客觀的專業背景就否定自己。
3、如果你要堅定的選擇這條路,就必須克服各種依賴症,比如安裝一個R語言或Python軟體,從龐大的數據中得出客觀的結論過程,用學到的知識去分析數據的價值等等,一定要動手動腦去實戰,不要單憑以前的文科思維(更注重思維的創造和個性的發揚),理性思維和客觀科學更重要。因為這種學習習慣決定著你必然會被同行的有心者遠遠地摔在後面,網路、谷歌、Stack Overflow永遠向你免費敞開大門;
4、動手實踐和實習參與項目是很好的數據科學或者數據分析的開端,只學不練假把式,只有直接用於實戰,才能看出來你學的東西到底有多少能夠落地,能夠用於提升業務的價值;
5、在求職以前,倘若時間允許,把R語言、Python(數據科學相關模塊)、SQL(可以選擇一個平台,比如MySQL)這三大關卡早點過了。(如果你不想再天天加班補的話);
6、如果你還是在校學生,學會分清各種事情的輕重緩急,比如各種無聊拉人湊場子講座、聽課發禮品的營銷洗腦課,各種……的無效應酬社交,如果全部都用在數據分析的學習上,你會發現你的時間多了很多,自然你也可以更早地追上同行的腳步;
7、腳踏實地的去走自己的路,不會的多寫、多看、多問(問真正有價值的問題)、多總結、多交流,給自己足夠的轉行周期(如果你是科班出身的【統計、數學、計算機】,也許會走的順風順水,但也不可以掉以輕心,倘若不是,請一定要慎重選擇,起碼要給自己一到兩年的轉行緩沖期【具體視自己的專業背景和技術實力而定】,什麼7天精通機器學習、三個月精通人工智慧,你自己敢信嘛?)
8、學會融會貫通不同領域的知識,觸類旁通、橫向遷移,這樣學起來才有越學越有通透的感覺,否則你只能增加筆記本的厚度,徒增煩惱罷了。
其實文科生學習數據分析或零基礎轉行的痛快和糾結大家都有,但任何的時間節點上,倘若一直停滯不前、猶豫不決,那麼所有可以有或可能有的機會都會錯失。慶幸我雖然渾渾噩噩,一路上也是披荊斬棘,但時光不負我,付出終究收獲成果!願所有文科生想進入數據分析行業或轉行的小夥伴一切都順利。
❷ 文科生是否可以擔任數據分析師的職務
題主不要被大學的專業所局限,對於數據分析師而言,統計學,計算機專業等出身雖然可以幫助建立初期的專業優勢。但數據分析師並不是必須是統計學或者計算機專業等相關專業才可以擔任,本人就是數據分析師,但是是礦物加工專業。如果非要舉個文科生例子的話,我的領導就是新聞學出身。
5)謹慎、耐心以及溝通能力。很多時候,數據結果並不是一蹴而就的,而需要不斷的試錯和迭代才能得出。所以,你必須要足夠耐心的去審視每個維度,交叉每個指標,從而方便你最後結果的輸出。當然,溝通能力也是必不可少的,畢竟你要了解需求,提交需求,甚至是和客戶交流。
❸ 文科研究生不做實驗那做什麼本人不懂
文科類研究生更多是做項目,寫論文。因為文科性質,沒法像工科那樣做實驗,以實驗數據說話,更多的是確定項目選題之後,通過查閱文獻,做調查等方式,獲得自己想要的答案,形成自己的論文,以闡釋或論述某種觀點。