Ⅰ 大數據學習入門規劃
大數據方向的工作目前分為三個主要方向:
01.大數據工程師
02.數據分析師
03.大數據科學家
04.其他(數據挖掘本質算是機器學習,不過和數據相關,也可以理解為大數據的一個方向吧)
一、大數據工程師的技能要求
二、大數據學習路徑
三、學習資源推薦(書籍、博客、網站)
一、大數據工程師的技能要求總結如下:
必須技能10條:01.Java高級編程(虛擬機、並發)02.Linux 基本操作03.Hadoop(此處指HDFS+MapRece+Yarn )04.HBase(JavaAPI操作+Phoenix )05.Hive06.Kafka 、07.Storm08.Scala09.Python10.Spark (Core+sparksql+Spark streaming )進階技能6條:11.機器學習演算法以及mahout庫加MLlib12.R語言13.Lambda 架構14.Kappa架構15.Kylin16.Aluxio
二、學習路徑
第一階段:
01.Linux學習(跟鳥哥學就ok了)
02.Java 高級學習(《深入理解Java虛擬機》、《Java高並發實戰》
第二階段:
03.Hadoop (董西成的書)04.HBase(《HBase權威指南》)05.Hive(《Hive開發指南》)06.Scala(《快學Scala》)07.Spark (《Spark 快速大數據分析》)08.Python (跟著廖雪峰的博客學習就ok了)
第三階段:對應技能需求,到網上多搜集一些資料就ok了,我把最重要的事情(要學什麼告訴你了),剩下的就是你去搜集對應的資料學習就ok了當然如果你覺得自己看書效率太慢,你可以網上搜集一些課程,跟著課程走也OK 。這個完全根據自己情況決定,如果看書效率不高就上網課,相反的話就自己看書。
三,學習資源推薦:01.Apache 官網02.Stackoverflow04.github03.Cloudra官網04.Databrick官網05.過往的記憶(技術博客)06.CSDN,51CTO 07.至於書籍當當、京東一搜會有很多,其實內容都差不多
那麼如何從零開始規劃大數據學習之路!
大數據的領域非常廣泛,往往使想要開始學習大數據及相關技術的人望而生畏。大數據技術的種類眾多,這同樣使得初學者難以選擇從何處下手。本文將為你開始學習大數據的征程以及在大數據產業領域找到工作指明道路,提供幫助。
Ⅱ 零基礎能學大數據嗎大數據分析好不好學
大數據入門不像學一門編程語言,自學一段時間就OK了。大數據是需要站在編程的基礎上學習的,所以零基礎的同學建議不要輕易入坑,但如果你已被大數據的就搜亮業前景和薪資迷得鬼迷心竅,又或者真的喜歡這行到骨子裡,倒是可以嘗試一下。因為沒有什麼滑岩比慾望更有動力。
零基礎學習大數據需要從以下幾個方面入手:
首先,大數據學習路線要明確,第一步:要進行大數據開發語言及其他基礎的學習。第二步:學習理論及核心技術。第三步:真實項目案例實戰。
1、計算機編程語言的學習。
對於零基礎的朋友,一開始入門可能不會太簡單。因為需要掌握一門計算機的世讓寬編程語言,大家都知道計算機編程語言有很多,比如:R,C++,JAVA等等。建議從java入手,容易學而且很好用,Java只需理解一些基本的概念,就可以用它編寫出適合於各種情況的應用程序
那在學習Java的時候,我們一般需要學習這些: HTML&CSS&JS,java的基礎,JDBC與資料庫,JSP java web技術, jQuery與AJAX技術,SpringMVC、Mybatis、Hibernate等等。這些都能幫助我們更好了解Java,學會運用Java。
2、大數據相關的學習。
學完了編程語言之後,一般就可以進行大數據部分的學習了。一般來說,學習大數據部分的時間比學習Java的時間要更長。大數據部分,包括hadoop 、spark、storm開發、hive 資料庫、Linux 操作系統等知識,分布式存儲、分布式計算框架等技術,還要熟悉大數據處理和分析技術。如果要完整的學習大數據的話,這些都是必不可少的。
3、實戰階段。
不用多說,學習完任何一門技術,實戰訓練是很重要的,進行一些實際項目的操作練手,可以幫助我們更好的理解所學的內容,同時對於相關知識也能加強記憶,在今後的運用中,也可以更快的上手,對於相關知識該怎麼用也有了經驗。
一般來說,零基礎學習大數據大概就是分為這3個階段,學習大數據不是件容易的事,但是只要你能多努力,積極地解決自己的疑惑,多練手,相信你一定可以掌握這門技術。
Ⅲ 通遼大數據職業培訓怎麼學習
大數據是一門技術的工作,基礎數據學習很多,從零開始學習,逐漸掌握,學習的東西很多,魔據大數據高級內容講的很風趣,互動多,學習也會快,任何事情都需要恆心。