1. 數據分析模式有幾種分別是什麼呢
一般而言,數據分析模式有四種,描述性數據分析、診斷性數據分析、預測性數據分析、指導性數據分析。
4)指導型數據分析
知道事情的嚴重性還不行,你還需要知道通過怎麼樣的辦法來進行改善產品質量,從而提升產品的銷量。這時候你通過調取產品線的各項抽樣數據,然後進行細致的分析,你突然發現某個生產線的質量是產品質量差的關鍵。
因此,是時候對這個產品線進行一些處理了,不然會影響整個品牌乃至企業的。
這就是數據分析常見的四種分析模型,希望對你有所幫助。
2. 如何分析銷售數據與報表
為什麼要做銷售數據分析?
企業的業務數據涉及銷售數據、財務數據、人力數據、產品數據等多種類型,而銷售數據在所有數據中的重要性毋庸置疑。通過分析銷售數據,將有助於發現經營問題,降低銷售成本,最終提高企業銷售利潤。
關鍵指標提取
不同行業對銷售指標的側重各有不同,本文將以建材行業為例進行說明。
其中涉及的銷售數據指標包括:銷售數量、銷售單價、銷售收入、單位成本、銷售成本、銷售毛利等,原始數據中還會涉及月份、城市、分類、計量單位、對應客戶等信息。
圖表與看板製作
提取完重要數據指標後,您就可以根據需求製作相關看板與圖表。在此之前,用戶必須對需要監控的指標做到心中有數。
一般來說,製作看板時,根據目的不同可以分為三類:
1. 基礎數據看板:總覽全局
這類看板大家都比較熟悉,主要是由包括地圖、條形圖、餅圖等一系列的基礎圖表組成,用於查看不同地區、時間、類別的銷售收入、銷售成本等基礎數據。下圖是根據建材行業的示例數據生成的一個看板:
(以上圖表使用DataHunter製作)
3. 銷售數據分析
1)銷售排名:優秀的銷售都喜歡拼第一,所以銷售龍虎榜尤為重要,每天莓菌會通過實際業績排名對前三名員工給予相應的獎勵,老闆也會通過排行榜了解各部門業績情況。
2)客戶排行榜:客戶方面也會做成交額匯總,因為大客戶是需要定期維護的。對於有些大客戶,成交額下降可以提醒我們及時做好補救。
3)庫存管理:對於銷售而言,了解公司庫存會節約很大的成本,因為一旦缺貨就會影響正常的交付時間。而管理者,通過圖表來了解產品銷售情況,哪些產品賣的好一目瞭然。
BDP除了能做以上這些好看的圖表,數據還可以自動更新:第一次做好分析之後,以後數據結果會自動定時更新哦(當然我連接了資料庫數據、表單數據)。
這些數據都是銷售最經常關注的數據,做好圖表後直接通過「分享」功能將數據結果分享給Boss,數據變動,分享的結果也會變動,這樣分析效率大大提高了呢,老闆也特別喜歡。