A. redis做mysql的緩存
redis緩存其實就是把經常訪問的數據放到redis裡面,用戶查詢的時候先去redis查詢,沒有查到就執行sql語句查詢,同時把數據同步到redis裡面。redis只做讀操作,在內存中查詢速度快。
使用redis做緩存必須解決兩個問題,首先就是確定用何種數據結構存儲來自mysql的數據;確定數據結構之後就是需要確定用什麼標識來作為數據的key。
mysql是按照表存儲數據的,這些表是由若干行組成。每一次執行select查詢,mysql都會返回一個結果集,這個結果是由若干行組成的。redis有五種數據結構:列表list,哈希hash,字元串string,集合set,sorted set(有序集合),對比幾種數據結構,string和hash是比較適合存儲行的數據結構,可以把數據轉成json字元串存入redis。
全量遍歷鍵: keys pattern keys *
有人說 KEYS 相當於關系性數據的庫的 select * ,在生產環境幾乎是要禁用的
不管上面說的對不對, keys 肯定是有風險的。那我們就換一種方案,在存數據的時候。把數據的鍵存一下,也存到redis裡面選hash類型,那麼取的時候就可以直接通過這個hash獲取所有的值,自我感覺非常好用!
B. Redis 如何保持和 MySQL 數據一致
redis在啟動之後,從資料庫載入數據。
讀請求:
不要求強一致性的讀請求,走redis,要求強一致性的直接從mysql讀取
寫請求:
數據首先都寫到資料庫,之後更新redis(先寫redis再寫mysql,如果寫入失敗事務回滾會造成redis中存在臟數據)
在並發不高的情況下,讀操作優先讀取redis,不存在的話就去訪問MySQL,並把讀到的數據寫回Redis中;寫操作的話,直接寫MySQL,成功後再寫入Redis(可以在MySQL端定義CRUD觸發器,在觸發CRUD操作後寫數據到Redis,也可以在Redis端解析binlog,再做相應的操作)
在並發高的情況下,讀操作和上面一樣,寫操作是非同步寫,寫入Redis後直接返回,然後定期寫入MySQL
1.當更新數據時,如更新某商品的庫存,當前商品的庫存是100,現在要更新為99,先更新資料庫更改成99,然後刪除緩存,發現刪除緩存失敗了,這意味著資料庫存的是99,而緩存是100,這導致資料庫和緩存不一致。
解決方法:
這種情況應該是先刪除緩存,然後在更新資料庫,如果刪除緩存失敗,那就不要更新資料庫,如果說刪除緩存成功,而更新資料庫失敗,那查詢的時候只是從資料庫里查了舊的數據而已,這樣就能保持資料庫與緩存的一致性。
2.在高並發的情況下,如果當刪除完緩存的時候,這時去更新資料庫,但還沒有更新完,另外一個請求來查詢數據,發現緩存里沒有,就去資料庫里查,還是以上面商品庫存為例,如果資料庫中產品的庫存是100,那麼查詢到的庫存是100,然後插入緩存,插入完緩存後,原來那個更新資料庫的線程把資料庫更新為了99,導致資料庫與緩存不一致的情況
解決方法:
遇到這種情況,可以用隊列的去解決這個問,創建幾個隊列,如20個,根據商品的ID去做hash值,然後對隊列個數取摸,當有數據更新請求時,先把它丟到隊列里去,當更新完後在從隊列里去除,如果在更新的過程中,遇到以上場景,先去緩存里看下有沒有數據,如果沒有,可以先去隊列里看是否有相同商品ID在做更新,如果有也把查詢的請求發送到隊列里去,然後同步等待緩存更新完成。
這里有一個優化點,如果發現隊列里有一個查詢請求了,那麼就不要放新的查詢操作進去了,用一個while(true)循環去查詢緩存,循環個200MS左右,如果緩存里還沒有則直接取資料庫的舊數據,一般情況下是可以取到的。
1、讀請求時長阻塞
由於讀請求進行了非常輕度的非同步化,所以一定要注意讀超時的問題,每個讀請求必須在超時間內返回,該解決方案最大的風險在於可能數據更新很頻繁,導致隊列中擠壓了大量的更新操作在裡面,然後讀請求會發生大量的超時,最後導致大量的請求直接走資料庫,像遇到這種情況,一般要做好足夠的壓力測試,如果壓力過大,需要根據實際情況添加機器。
2、請求並發量過高
這里還是要做好壓力測試,多模擬真實場景,並發量在最高的時候QPS多少,扛不住就要多加機器,還有就是做好讀寫比例是多少
3、多服務實例部署的請求路由
可能這個服務部署了多個實例,那麼必須保證說,執行數據更新操作,以及執行緩存更新操作的請求,都通過nginx伺服器路由到相同的服務實例上
4、熱點商品的路由問題,導致請求的傾斜
某些商品的讀請求特別高,全部打到了相同的機器的相同丟列里了,可能造成某台伺服器壓力過大,因為只有在商品數據更新的時候才會清空緩存,然後才會導致讀寫並發,所以更新頻率不是太高的話,這個問題的影響並不是很大,但是確實有可能某些伺服器的負載會高一些。
img
搜索微信號(ID:芋道源碼),可以獲得各種 Java 源碼解析。
並且,回復【書籍】後,可以領取筆者推薦的各種 Java 從入門到架構的書籍。
C. 如何保證redis與mysql數據最終一致性
保證redis與mysql數據最終一致性,有以下幾種方案
先更新redis,再更新mysql
流程圖
最後mysql是請求1的數據,redis是請求2的數據,不能保證最終一致性
先更新mysql,再更新redis
流程圖
最後mysql是請求2的數據,redis是請求1的數據,不能保證最終一致性
先刪redis,再更新mysql
流程圖
最後mysql是新數據,redis是舊數據,不能保證最終一致性
先更新mysql,再刪redis
流程圖
最後mysql是新數據,redis是舊數據
延遲刪除: 先更新mysql,然後sleep一段時間,再刪除redis
流程圖
sleep時間,由業務側決定,最好是大於查詢介面的耗時。
本方案有一個問題: 更新mysql後,刪除redis之前,查詢請求從redis查到的是舊數據,雖然可以保證最終一致性,但是查到舊數據的時間較長
延遲雙刪: 先刪redis,然後更新mysql,然後sleep一段時間,再刪除redis。
本方案可以讓用戶更早查詢到新數據。
方案六看起來是所有方案中最優的,但其實還是有問題,比如下面的情況(出現概率極低),如果確實發生了這種情況,只能等key到達過期時間自己失效,或者引入mq等中間件對刪除redis失敗做重試。
最後,友情提示一下,這個問題是面試高頻題,但是面試沒法畫圖,很難描述清楚各種場景,可以用下面的表達方式