導航:首頁 > 數據處理 > 什麼級別是大數據

什麼級別是大數據

發布時間:2024-08-12 09:21:09

大數據的四大特點分別是什麼

一、大量


大數據的特徵首先就體現為“大”,從先Map3時代,一個小小的MB級別的Map3就可以滿意很多人的需求,然而跟著時刻的推移,存儲單位從曩昔的GB到TB,乃至現在的PB、EB級別。只要數據體量達到了PB級別以上,才幹被稱為大數據。跟著信息技能的高速發展,數據開端爆發性增長。交際網路、移動網路、各種智能東西等,都成為數據的來歷。


二、高速


便是經過演算法對數據的邏輯處理速度十分快,1秒規律,可從各種類型的數據中快速獲得高價值的信息,這一點也是和傳統的數據挖掘技能有著本質的不同。而且這些數據是需要及時處理的,由於花費很多本錢去存儲效果較小的歷史數據是十分不劃算的。


三、多樣


如果只要單一的數據,那麼這些數據就沒有了價值。廣泛的數據來歷,決議了大數據方式的多樣性。任何方式的數據都可以產生效果,目前使用最廣泛的便是推薦系統,如淘寶,網易雲音樂、今天頭條等,這些平台都會經過對用戶的日誌數據進行剖析,然後進一步推薦用戶喜歡的東西。


四、價值


這也是大數據的核心特徵。實際國際所產生的數據中,有價值的數據所佔份額很小。你如果有1PB以上的全國所有20-35年輕人的上網數據的時分,那麼它天然就有了商業價值,比方經過剖析這些數據,我們就知道這些人的愛好,進而指導產品的發展方向等等。如果有了全國幾百萬患者的數據,根據這些數據進行剖析就能猜測疾病的發生,這些都是大數據的價值。


關於大數據的四大特點分別是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈡ 大數據到底是什麼行業啊,具體是干什麼的啊

大數據即海量的數據,一般至少要達到TB級別才能算得上大數據,相比於傳統的企業內數據,大數據的內容和結構要更加多樣化,數值、文本、視頻、語音、圖像、文檔、XML、HTML等都可以作為大數據的內容。提到大數據,最常見的應用就是大數據分析,大數據分析的數據來源不僅是局限於企業內部的信息化系統,還包括各種外部系統、機器設備、感測器、資料庫的數據,如:政府、銀行、國計民生、行業產業、社交網站等數據,通過大數據分析技術及工具將海量數據進行統計匯總後,以圖形圖表的方式進行數據展現,實現數據的可視化,在此基礎上結合機器學習演算法,對數據進行深度挖掘,發掘數據的潛在價值。應用部分,大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合,大數據分析的應用場景具有行業性,不同行業所呈現的內容與分析維度各不相同,具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。1. 互聯網行業大數據的應用代表為電商、社交、網路檢索領域,可以根據銷售數據、客戶行為(活躍度、商品偏好、購買率等)數據、交易數據、商品收藏數據、售後數據等、搜索數據刻畫用戶畫像,根據客戶的喜好為其推薦對應的產品。2. 政府行業在大數據分析部分包括質檢部門、公安部門、氣象部門、醫療部門等,質檢部門包括對商品生產、加工、物流、貿易、消費全過程的信息進行採集、驗證、檢查,保證食品物品安全;氣象部門通過構建大氣運動規律評估模型、氣象變化關聯性分析等路徑,精準地預測氣象變化,尋找最佳的解決方案,規劃應急、救災工作。3. 金融行業的大數據分析多應用於銀行、證券、保險等細分領域,在大數據分析方面結合多種渠道數據進行分析,客戶在社交媒體上的行為數據、在網站上消費的交易數據、客戶辦理業務的預留數據,結合客戶年齡、資產規模、消費偏好等對客戶群進行精準定位,分析其在金融業的需求等。4. 傳統行業包括:能源、電信、地產、零售、製造等。電信行業藉助大數據應用分析感測器數據異常情況,預測設備故障,提高用戶滿意度;能源行業利用大數據分析挖掘客戶行為特徵、消費規律,提高能源需求准確性;地產行業通過內外部數據的挖掘分析,使管理者掌握和了解房地產行業潛在的市場需求,掌握商情和動態,針對細分市場實施動態定價和差別定價等;製造行業通過大數據分析實現設備預測維護、優化生產流程、能源消耗管控、發現潛在問題並及時預警等。伴隨著信息化的快速發展、數據量加大,已經進入數據時代,相信各行業間日後對於大數據的應用會更多、更深入。

㈢ 「大數據」 到底有多大

在很多人的眼裡大數據可能是一個很模糊的概念,但是,在日常生活中大數據有離我們很近,我們無時無刻不再享受著大數據所給我們帶來的便利,個性化,人性化。全面的了解大數據我們應該從四個方面簡單了解。定義,結構特點,我們身邊有哪些大數據,大數據帶來了什麼,這四個方面了解。
那麼「大數據」到底是什麼呢?

在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB ,1PB=1024GB才足以稱為大數據。

如圖:

衡量單位一覽表
其次,大數據具有什麼樣的特點和結構呢?

大數據從整體上看分為四個特點,
第一,大量。

衡量單位PB級別,存儲內容多。
第二,高速。

大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。

數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。

大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。

㈣ 大數據是什麼多大的數據叫大數據

根據數據收集的埠,企業端與個人端之間,大數據的數量級別是不同的。
企業端(B端)數據近十萬的級別,就可以稱為大數據;個人端(C端)的大數據要達到千萬級別。收集渠道沒有特定要求,PC端、移動端或傳統渠道都可以,重點要達到這樣數量級的有效數據,形成數據服務即可。很有趣,大家可以看到2B和2C,兩類大數據差了兩個數量級。
有些小公司,數據只有千到萬級的規模,但經過收集分析,也能從中有針對性的總結出這一群體的原則,同樣能指導企業進行一定程度的用戶分析、獲取或者是服務工作,但這並不是大數據,而是一般性的數據挖掘。
大數據面向的是更海量的一個數據,藉助了更廣義的知識資料庫的分析方法。大部分的數據公司的數據來源是海量的,它的收集和分析,並不是局限於個體,而是以一個非常非常廣泛的群體為對象展開的。

㈤ 大數據是什麼

作者:李麗
鏈接:https://www.hu.com/question/23896161/answer/28624675
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。
亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。
研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二、大數據分析
從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
三、大數據技術
1、數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
2、數據存取:關系資料庫、NOSQL、SQL等。
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or
association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text,
Web ,圖形圖像,視頻,音頻等)
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
四、大數據特點
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
1、
數據體量巨大。從TB級別,躍升到PB級別。
2、
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
3、
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4、
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。
五、大數據處理
大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理
六、大數據應用與案例分析
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
[1] Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
[2] 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
[3] 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
[1] 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

[2] 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
[1] XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
[2] 電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
[3] 中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
[4] NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。

㈥ 各位親,大數據是個什麼概念

大數據 , 就是PB級別以上的數據 ,
1 TB = 1,024 GB = 1,048,576 MB
1 PB = 1,024 TB = 1,048,576 GB
1 EB = 1,024 PB = 1,048,576 TB
1 ZB = 1,024 EB = 1,048,576 PB
1 YB = 1,024 ZB = 1,048,576 EB
1 BB = 1,024 YB = 1,048,576 ZB
1 NB = 1,024 BB = 1,048,576 YB
1 DB = 1,024 NB = 1,048,576 BB
這個是換算的, 數據 達到 PB級別以後 , 就變得不好處理, 所以 現在 研究這方面的很多,
淘寶 每年產生的數據 至少是PB以上的。
大數據 的處理對未來有很重要 的地位 。

閱讀全文

與什麼級別是大數據相關的資料

熱點內容
壓鑄成型技術怎麼學 瀏覽:581
小程序如何讓別人點奶茶 瀏覽:255
信息傳播有哪些法規規定 瀏覽:322
虢鎮中心市場屬於哪個街道 瀏覽:508
刷卡機禁止d0交易是什麼意思 瀏覽:237
微信如何群發不接受信息 瀏覽:824
聖元代理怎麼做 瀏覽:434
細胞中哪些攜帶遺傳信息 瀏覽:143
庫存車信息在哪裡找 瀏覽:672
和七麥數據禪大師一樣有什麼平台 瀏覽:388
小程序怎麼掃 瀏覽:83
中國有哪些神奇的技術 瀏覽:132
吹牛的技術是什麼 瀏覽:106
入戶門地墊市場怎麼樣 瀏覽:119
去菜市場買什麼好得快 瀏覽:338
在表格中怎麼篩選某種重復的數據 瀏覽:999
小程序如何跳轉視頻號 瀏覽:805
傳統的稅收征管面對著哪些信息不對稱 瀏覽:386
如何區別中國移動真偽信息 瀏覽:499
如何用自己產品打廣告 瀏覽:66