❶ 如何通過網路爬蟲獲取網站數據
這里以python為例,簡單介紹一下如何通過python網路爬蟲獲取網站數據,主要分為靜態網頁數據的爬埋山差取和動態網頁數據的爬取,實驗環境win10+python3.6+pycharm5.0,主要內容如下:
靜態網頁數據
這里的數據都嵌套在網頁源碼中,所以直接requests網頁源碼進行解析就行,下面我簡單介紹一下,這里以爬取糗事網路上的數據為例:
1.首先,打開原網頁,如下,這里假設要爬取的欄位包括昵稱、內容、好笑數和評論數:
接著查看網頁源碼,如下,可以看的出來,所有的數據都嵌套在網頁中:
2.然後針對以上網頁結構,我們就可以直接編寫爬蟲代碼,解析網頁並提取出我們需要的數據了,測試代碼如下,非常簡單,主要用到requests+BeautifulSoup組合,其中requests用於獲取網頁源碼,BeautifulSoup用於解析網頁提取數據:
點擊運行這個程序,效果如下,已經成功爬取了到我們需要的數據:
動態網頁數據
這里的數據都沒有在網頁源碼中(所以直接請求頁面是獲取不到任何數據的),大部分情況下都是存儲在一唯唯個json文件中,只有在網頁更新的時候,才會載入數據,下面我簡單介紹一下這種方式,這里以爬取人人貸上面的數據為例:
1.首先,打開原網頁,如下,這里假設要爬取的數據包括年利率,借款標題,期限,金額和進度:
接著按F12調出開發者工具,依次點擊「Network」->「XHR」,F5刷新頁面,就可以找打動態載入的json文件,如下,也就是我們需要爬彎皮取的數據:
2.然後就是根據這個json文件編寫對應代碼解析出我們需要的欄位信息,測試代碼如下,也非常簡單,主要用到requests+json組合,其中requests用於請求json文件,json用於解析json文件提取數據:
點擊運行這個程序,效果如下,已經成功爬取到我們需要的數據:
至此,我們就完成了利用python網路爬蟲來獲取網站數據。總的來說,整個過程非常簡單,python內置了許多網路爬蟲包和框架(scrapy等),可以快速獲取網站數據,非常適合初學者學習和掌握,只要你有一定的爬蟲基礎,熟悉一下上面的流程和代碼,很快就能掌握的,當然,你也可以使用現成的爬蟲軟體,像八爪魚、後羿等也都可以,網上也有相關教程和資料,非常豐富,感興趣的話,可以搜一下,希望以上分享的內容能對你有所幫助吧,也歡迎大家評論、留言進行補充。
❷ 從網站抓取數據的3種最佳方法
1.使用網站API
許多大型社交媒體網站,例如Facebook,Twitter,Instagram,StackOverflow,都提供API供用戶訪問其數據。有時,您可以選擇官方API來獲取結構化數據。如下面的Facebook Graph API所示,您需要選擇進行查詢的欄位,然後訂購數據,執行URL查找,發出請求等。
2.建立自己的搜尋器
但是,並非所有網站都為用戶提供API。某些網站由於技術限制或其他原因拒絕提供任何公共API。有人可能會提出RSS提要,但是由於限制了它們的使用,因此我不會對此提出建議或發表評論。在這種情況下,我想討論的是我們可以自行構建爬蟲來處理這種情況。
3.利用現成的爬蟲工具
但是,通過編程自行爬網網站可能很耗時。對於沒有任何編碼技能的人來說,這將是一項艱巨的任務。因此,我想介紹一些搜尋器工具。
Octoparse是一個功能強大的基於Visual Windows的Web數據搜尋器。用戶使用其簡單友好的用戶界面即可輕松掌握此工具。要使用它,您需要在本地桌面上下載此應用程序。
http://Import.io也稱為Web搜尋器,涵蓋所有不同級別的搜尋需求。它提供了一個魔術工具,可以將站點轉換為表格,而無需任何培訓。如果需要抓取更復雜的網站,建議用戶下載其桌面應用程序。構建完API後,它們會提供許多簡單的集成選項,例如Google Sheets,http://Plot.ly,Excel以及GET和POST請求。當您認為所有這些都帶有終身免費價格標簽和強大的支持團隊時,http://import.io無疑是那些尋求結構化數據的人的首要選擇。它們還為尋求更大規模或更復雜數據提取的公司提供了企業級付費選項。
關於從網站抓取數據的3種最佳方法,該如何下手的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❸ 請教網頁里的特定數據怎麼抓取
網頁抓取可以使用爬蟲技術,春沒判以下是一些察侍常用的網頁抓取方法:
1. 使用 Python 的 Requests 庫請求網頁,然後使用 Beautiful Soup 庫進行頁面解析,提取目標數據。
2. 使用 Selenium 庫模擬瀏覽器操作,通過 CSS Selector 或 XPath 定位特定元素,提取目標數據。
3. 使用 Scrapy 爬蟲框架,在爬蟲腳本中定義提取規則,自動扒改抓取網頁並提取目標數據。
需要注意的是,進行網頁抓取時,應遵守網站的 Robots 協議,不要過於頻繁地進行抓取,以免給網站帶來負擔。此外還需要注意數據的使用方式是否符合法規和道德規范。