Ⅰ 大數據採集與存儲的基本步驟有哪些
數據抽取
針對大數據分析平台需要採集的各類數據,分別有針對性地研製適配介面。對於已有的信息系統,研發對應的介面模塊與各信息系統對接,不能實現數據共享介面的系統通過ETL工具進行數據採集,支持多種類型資料庫,按照相應規范對數據進行清洗轉換,從而實現數據的統一存儲管理。
數據預處理
為使大數據分析平台能更方便對數據進行處理,同時為了使得數據的存儲機制擴展性、容錯性更好,需要把數據按照相應關聯性進行組合,並將數據轉化為文本格式,作為文件存儲下來。
數據存儲
除了Hadoop中已廣泛應用於數據存儲的HDFS,常用的還有分布式、面向列的開源資料庫Hbase,HBase是一種key/value系統,部署在HDFS上,與Hadoop一樣,HBase的目標主要是依賴橫向擴展,通過不斷的增加廉價的商用伺服器,增加計算和存儲能力。
關於大數據採集與存儲的基本步驟有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
Ⅱ 如何獲取大數據信息
一、公開資料庫
常用數據公開網站:
UCI:經典的機器學習、數據挖掘數據集,包含分類、聚類、回歸等問題下的多個數據集。很經典也比較古老,但依然活躍在科研學者的視線中。
國家數據:數據來源中華人民共和國國家統計局,包含了我國經濟民生等多個方面的數據,並且在月度、季度、年度都有覆蓋,全面又權威。
亞馬遜:來自亞馬遜的跨科學雲數據平台,包含化學、生物、經濟等多個領域的數據集。
figshare:研究成果共享平台,在這里可以找到來自世界的大牛們的研究成果分享,獲取其中的研究數據。
github:一個非常全面的數據獲取渠道,包含各個細分領域的資料庫資源,自然科學和社會科學的覆蓋都很全面,適合做研究和數據分析的人員。
二、利用爬蟲可以獲得有價值數據
這里給出了一些網站平台,我們可以使用爬蟲爬取網站上的數據,某些網站上也給出獲取數據的API介面,但需要付費。
1.財經數據,2.網貸數據;3.公司年報;4.創投數據;5.社交平台;6.就業招聘;7.餐飲食品;8.交通旅遊;9.電商平台;10.影音數據;11.房屋信息;12.購車租車;13.新媒體數據;14.分類信息。
三、數據交易平台
由於現在數據的需求很大,也催生了很多做數據交易的平台,當然,出去付費購買的數據,在這些平台,也有很多免費的數據可以獲取。
優易數據:由國家信息中心發起,擁有國家級信息資源的數據平台,國內領先的數據交易平台。平台有B2B、B2C兩種交易模式,包含政務、社會、社交、教育、消費、交通、能源、金融、健康等多個領域的數據資源。
數據堂:專注於互聯網綜合數據交易,提供數據交易、處理和數據API服務,包含語音識別、醫療健康、交通地理、電子商務、社交網路、圖像識別等方面的數據。
四、網路指數
網路指數:指數查詢平台,可以根據指數的變化查看某個主題在各個時間段受關注的情況,進行趨勢分析、輿情預測有很好的指導作用。除了關注趨勢之外,還有需求分析、人群畫像等精準分析的工具,對於市場調研來說具有很好的參考意義。同樣的另外兩個搜索引擎搜狗、360也有類似的產品,都可以作為參考。
阿里指數:國內權威的商品交易分析工具,可以按地域、按行業查看商品搜索和交易數據,基於淘寶、天貓和1688平台的交易數據基本能夠看出國內商品交易的概況,對於趨勢分析、行業觀察意義不小。
友盟指數:友盟在移動互聯網應用數據統計和分析具有較為全面的統計和分析,對於研究移動端產品、做市場調研、用戶行為分析很有幫助。除了友盟指數,友盟的互聯網報告同樣是了解互聯網趨勢的優秀讀物。
五、網路採集器
網路採集器是通過軟體的形式實現簡單快捷地採集網路上分散的內容,具有很好的內容收集作用,而且不需要技術成本,被很多用戶作為初級的採集工具。
造數:新一代智能雲爬蟲。爬蟲工具中最快的,比其他同類產品快9倍。擁有千萬IP,可以輕松發起無數請求,數據保存在雲端,安全方便、簡單快捷。
火車採集器:一款專業的互聯網數據抓取、處理、分析,挖掘軟體,可以靈活迅速地抓取網頁上散亂分布的數據信息。
八爪魚:簡單實用的採集器,功能齊全,操作簡單,不用寫規則。特有的雲採集,關機也可以在雲伺服器上運行採集任務。
Ⅲ 大數據採集方法有哪些
數據採集方式老襪有:網路爬蟲、開放資料庫、利用軟體介面、軟體機器人採集等。
網路爬蟲:模擬客戶端發生網路請求,接收侍團激請求響應,一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。開放資料庫:開放資料庫方式可以直接從目標資料庫中獲取需要或御的數據,准確性高,實時性也有保證,是比較直接、
便捷的一種方式。利用軟體介面:一種常見的數據對接方式,通過各軟體廠商開放數據介面,實現不同軟體數據的互聯互通。軟體機器人採集:既能採集客戶端軟體數據,也能採集網站網站中的軟體數據。
Ⅳ 大數據工程師採集數據的方法有哪幾類
【導語】數據的搜集是挖掘數據價值的第一步,當數據量越來越大時,可提取出來的有用數據必然也就更多,只需善用數據化處理渠道,便能夠確保數據剖析結果的有效性,助力企業實現數據驅動,那麼大數據工程師採集數據的方法有哪幾類?
1、離線搜集:
工具:ETL;
在數據倉庫的語境下,ETL基本上便是數據搜集的代表,包括數據的提取(Extract)、轉換(Transform)和載入(Load)。在轉換的過程中,需求針對具體的事務場景對數據進行治理,例如進行不合法數據監測與過濾、格式轉換與數據規范化、數據替換、確保數據完整性等。
2、實時搜集:
工具:Flume/Kafka;
實時搜集首要用在考慮流處理的事務場景,比方,用於記錄數據源的履行的各種操作活動,比方網路監控的流量辦理、金融運用的股票記賬和 web
伺服器記錄的用戶訪問行為。在流處理場景,數據搜集會成為Kafka的顧客,就像一個水壩一般將上游源源不斷的數據攔截住,然後依據事務場景做對應的處理(例如去重、去噪、中心核算等),之後再寫入到對應的數據存儲中。
3、互聯網搜集:
工具:Crawler, DPI等;
Scribe是Facebook開發的數據(日誌)搜集體系。又被稱為網頁蜘蛛,網路機器人,是一種按照一定的規矩,自動地抓取萬維網信息的程序或者腳本,它支持圖片、音頻、視頻等文件或附件的搜集。
除了網路中包含的內容之外,關於網路流量的搜集能夠運用DPI或DFI等帶寬辦理技術進行處理。
4、其他數據搜集方法
關於企業生產經營數據上的客戶數據,財務數據等保密性要求較高的數據,能夠通過與數據技術服務商合作,運用特定體系介面等相關方式搜集數據。比方八度雲核算的數企BDSaaS,無論是數據搜集技術、BI數據剖析,還是數據的安全性和保密性,都做得很好。
關於大數據工程師採集數據的方法,就給大家分享到這里了,想要成為大數據工程師的,對於以上的內容,就需要提前了解和學習起來,祝大家成功!