導航:首頁 > 數據處理 > 傳統行業數據分析有哪些業務場景

傳統行業數據分析有哪些業務場景

發布時間:2024-06-26 01:34:57

大數據常見的應用場景有哪些

大數據時代的出現簡單的講是海量數據同完美計算能力結合的結果,確切的說是移動互聯網、物聯網產生了海量的數據,大數據計算技術完美地解決了海量數據的收集、存儲、計算、分析的問題。
對於大數據的應用場景,包括各行各業對大數據處理和分析的應用,最核心的還是用戶需求。
一、醫療大數據看病更高效
除了較早前就開始利用大數據的互聯網公司,醫療行業是讓大數據分析最先發揚光大的傳統行業之一。
二、生物大數據改良基因
當下,我們所說的生物大數據技術主要是指大數據技術在基因分析上的應用,通過大數據平台人類可以將自身和生物體基因分析的結果進行記錄和存儲,利用建立基於大數據技術的基因資料庫
三、金融大數據理財利器
大數據在金融行業的應用可以總結為以下五個方面:精準營銷、風險管控、決策支持、效率提升、產品設計等。
四、零售大數據最懂消費者
零售行業大數據應用有兩個層面,一個層面是零售行業可以了解客戶消費喜好和趨勢,進行商品的精準營銷,降低營銷成本。另一層面是依據客戶購買產品,為客戶提供可能購買的其它產品,擴大銷售額,也屬於精準營銷范疇。另外零售行業可以通過大數據掌握未來消費趨勢,有利於熱銷商品的進貨管理和過季商品的處理。
五、電商大數據精準營銷法寶
電商是最早利用大數據進行精準營銷的行業,除了精準營銷,電商可以依據客戶消費習慣來提前為客戶備貨,並利用便利店作為貨物中轉點,在客戶下單15分鍾內將貨物送上門,提高客戶體驗。
六、農牧大數據量化生產
大數據在農業應用主要是指依據未來商業需求的預測來進行農牧產品生產,降低菜賤傷農的概率。同時大數據的分析將會更見精確預測未來的天氣氣候,幫助農牧民做好自然災害的預防工作。大數據同時也會幫助農民依據消費者消費習慣決定來增加哪些品種的種植,減少哪些品種農作物的生產,提高單位種植面積的產值,同時有助於快速銷售農產品,完成資金迴流。
七、交通大數據暢通出行
交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。
盡管現在已經基本實現了數字化,但是數字化和數據化還根本不是一回事,只是局部的提高了採集、存儲和應用的效率,本質上並沒有太大的改變。而大數據時代的到來必然帶來破解難題的重大機遇。
八、教育大數據因材施教
隨著技術的發展,信息技術已在教育領域有了越來越廣泛的應用。考試、課堂、師生互動、校園設備使用、家校關系……只要技術達到的地方,各個環節都被數據包裹。在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。
九、體育大數據奪冠精靈
大數據對於體育的改變可以說是方方面面,從運動員本身來講,可穿戴設備收集的數據可以讓自己更了解身體狀況。媒體評論員,通過大數據提供的數據更好的解說比賽,分析比賽。數據已經通過大數據分析轉化成了洞察力,為體育競技中的勝利增加籌碼,也為身處世界各地的體育愛好者隨時隨地觀賞比賽提供了個性化的體驗。盡管鮮有職業網球選手願意公開承認自己利用大數據來制定比賽策劃和戰術,但幾乎每一個球員都會在比賽前後使用大數據服務。
十、環保大數據對抗PM2.5
氣象對社會的影響涉及到方方面面。傳統上依賴氣象的主要是農業、林業和水運等行業部門,而如今,氣象儼然成為了二十一世紀社會發展的資源,並支持定製化服務滿足各行各業用戶需要。藉助於大數據技術,天氣預報的准確性和實效性將會大大提高,預報的及時性將會大大提升,同時對於重大自然災害,例如龍卷風,通過大數據計算平台,人們將會更加精確地了解其運動軌跡和危害的等級,有利於幫助人們提高應對自然災害的能力。
十一、食品大數據舌尖上的安全
大數據不僅能帶來商業價值,亦能產生社會價值。隨著信息技術的發展,食品監管也面臨著眾多的各種類型的海量數據,如何從中提取有效數據成為關鍵所在。可見,大數據管理是一項巨大挑戰,一方面要及時提取數據以滿足食品安全監管需求;另一方面需在數據的潛在價值與個人隱私之間進行平衡。相信大數據管理在食品監管方面的應用,可以為食品安全撐起一把有力的保護傘。
十二、調控和財政支出大數據令其有條不紊
政府利用大數據技術可以了解各地區的經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據數據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。
十三、輿情監控大數據
國家正在將大數據技術用於輿情監控,其收集到的數據除了解民眾訴求,降低群體事件之外,還可以用於犯罪管理。

② 工業大數據包括哪些工業大數據應用在哪些方面

【導讀】眾所周知,第二次世界大戰也稱為工業革命,可見工業在生活中是多麼的重要,現在工業也已經趨於人工智慧化,不過還是處於前期的觀望試運行階段,今天我們就來了解一下大數據在工業方面的應用有哪些,一起來看看吧!

大數據在工業中的應用有哪些?

從需求角度來看,目前國內製造企業對大數據的需求較為明顯,但很多用戶仍處於觀望和試驗階段,不知道如何進行。因此,對於大數據服務提供商來說,有必要結合行業業務,尋找合適的應用場景。

工業大數據的應用有哪些?

互聯網給傳統製造業帶來了挑戰,而互聯網大數據可以為企業管理者和參與者提供一個新的視角,通過技術創新和開發,以及對數據的全面感知、收集、分析和共享,來審視製造業價值鏈。所帶來的巨大價值正在被傳統企業所認可。

然而,不同於目前互聯網大數據的火熱,工業大數據的應用對於企業來說有著很高的門檻。與互聯網不同,行業大數據與行業業務密切相關。因此,對企業的行業積累和對行業業務的深入了解都有很高的要求。此外,行業內的大數據分析比較准確,邏輯關系非常清晰。

工業大數據的應用有哪些?大數據在工業中的應用有哪些?通過大數據分析,企業可以使部門之間的數據更加協調,從而准確預測市場需求缺口。同時,通過更加靈活的工藝管理和更加自動化的生產設備裝配調度,實現智能化生產。然而,據我們所知,在中國從事大數據應用的公司並不多。然而,擁有自主知識產權和核心技術的企業並不多。要做好工業大數據的應用,需要有一套嚴謹的數據推理邏輯,以及平台和工具。目前,國內大數據應用企業還沒有足夠的能力滿足這一需求。

然而,仍有一些大型工業企業處於應用的前沿。以唐山鋼鐵集團為例,通過引進國際最先進的生產線,實現實時數據採集,與涵宇等企業合作,深入挖掘行業大數據價值,實時生產監控、生產調度、產品質量管理、能源控制等。此外,先進製造企業基於大數據在行業中的應用,將產品、機器、資源、人有機結合,推動基於大數據分析和應用的製造業智能化轉型。

綜上所述,在「互聯網+」時代,用戶需求具有實時性、小批量、碎片化、更新快等特點,對傳統製造業提出了挑戰。工業大數據有其鮮明的特點。隨著信息化和工業化的融合,產業大數據的應用為製造業轉型升級開辟了一條新途徑。深入探討工業大數據在製造過程中的應用場景和應用,將有利於更好地發揮其支撐作用。

以上就是小編今天給大家整理的關於「工業大數據包括哪些?工業大數據應用在哪些方面?」的相關內容,希望對大家有所幫助。總的來說,大數據的價值不可估量,未來發展前景也是非常可觀的,因此有興趣的小夥伴,盡早著手學習哦!

③ 數據分析行業應用在哪些領域

1、醫療保健


醫療保健系統內生成的數據水平並非無關緊要。傳統上,由於標准化和整合數據的能力有限,醫療保健行業滯後於使用大數據分析。


但是現在,大數據分析分析通過提供個性化的醫學和處方分析而改善了醫療保健。研究人員正在挖掘數據,以查看對於特定情況更有效的治療方法,確定與葯物副作用有關的模式,並獲得其他可幫助患者並降低成本的重要信息。


2、製造業


預測性製造提供了幾乎零的停機時間和透明度。它需要大量的數據和高級的預測工具,才能系統地將數據轉化為有用的信息。


在製造業中使用大數據分析應用程序的主要好處是:產品質量和缺陷跟蹤、供應計劃、製造過程缺陷跟蹤。

④ 什麼是大數據分析 主要應用於哪些行業以製造業為例

大數據作為IT行業最流行的詞彙,圍繞大數據的商業價值的使用,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等,逐漸成為業界所追求的利潤焦點。隨著大數據時代的到來,大數據分析也應運而生。

1.大數據分析主要應用於哪些行業?

製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

金融業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。

餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。

2.大數據分析師就業前景如何?

從20世紀90年代起,歐美國家開始大量培養數據分析師,直到現在,對數據分析師的需求仍然長盛不衰,而且還有擴展之勢。

根據美國勞工部預測,到2018年,數據分析師的需求量將增長20%。就算你不是數據分析師,但數據分析技能也是未來必不可少的工作技能之一。在數據分析行業發展成熟的國家,90%的市場決策和經營決策都是通過數據分析研究確定的。

3.關於大數據分析具體含義?

1、數據分析可以讓人們對數據產生更加優質的詮釋,而具有預知意義的分析可以讓分析員根據可視化分析和數據分析後的結果做出一些預測性的推斷。

2、大數據的分析與存儲和數據的管理是一些數據分析層面的最佳實踐。通過按部就班的流程和工具對數據進行分析可以保證一個預先定義好的高質量的分析結果。

3、不管使用者是數據分析領域中的專家,還是普通的用戶,可作為數據分析工具的始終只能是數據可視化。可視化可以直觀的展示數據,讓數據自己表達,讓客戶得到理想的結果。

什麼是大數據分析 主要應用於哪些行業?中琛魔方大數據平台指出大數據的價值,遠遠不止於此,大數據針對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。

我們可以看看億信華辰關於製造業的案例,

某電建集團主要從事國內外高速公路、市政、鐵路、軌道交通、橋梁、隧 道、城市綜合體開發、機場、港口、航道、地下綜合管廊以及生態水環境治理、海綿 城市建設、環境保護等項目投資、建設、運營等,為客戶提供投資融資、咨詢規劃、 設計建造、管理運營一攬子解決方案和集成式、一體化服務。成立以來,投資建設了 一大批體量大、強度高、領域寬的基礎設施及環保項目。

該公司的數據化建設,或將成為新型基礎設施建設的一個縮影。

項目背景 數字經濟時代,數據資源已經成為企業的核心資源和核心競爭力,各類企業信息化建設的重心正從 IT(信息技術) 向 DT(數據技術) 轉化,未來信息化建設的重心將是如何對組織內外部的數據進行深入、多維、實時的挖掘和分析,以滿足決策層的需求,推動信息化向更高層面進化,構築公司數字經濟時代的新優勢。目前,由於各級各部門大量的時間用在內外部各種繁雜的報表填報、匯總、統計和分析上,同時各級領導有對公司或者所轄單位的整體經營情況仍舊通過傳統的匯報、傳統的報表等了解,缺乏直觀和可視化系統支撐決策分析,主要存在問題如下:1、數據孤島嚴重各級各部門數據無法有效共享,跨部門跨層級的數據採集、共享和分析利用困難。2、數據採集方式落後數據採集仍舊採用傳統 EXCEL 方式進行,缺乏自下而上的數據採集、數據審核、數據報送、匯總分析的數據採集平台支撐,導致數據源分散、數據標准不統一、數據質量難以保證、數據採集效率低下。3、缺乏統一的決策經營指標體系和數據資源統一管理機制導致數據資源不能有效利用,價值無法充分發揮,無法為各級領導決策提供有效支持。

建設內容 為徹底解決以上問題,根據需求和數據資產類項目建設方式,系統實現按照「指標資源整理-應用場景展現設計--數據獲取-指標資源池-頁面實現-決策門戶 」的方式設計。即根據梳理的指標體系應用場景需要確定設計展現界面展現內容,根據展現內容確定指標體系,根據指標體系來並收集相關數據。

1、搭建智能填報系統 梳理指標體系,構建決策指標和主題指標,明確指標類型,指標數據來源,各指標輸出口徑:是否填報、填報維度與對象、填報周期等等。實現公司各級各部門自下而上決策數據填報、數據審核、 數據報送、匯總查詢、數據補錄等全過程網路化數據採集的需要。

2、構建經營決策指標體系構建公司經營決策指標體系。收集數據分析需求,分析匯總形成公司市場、經營、履約、運營、項目等生產經營關鍵指標和相關數據分析主題、指標,形成指標 資源池,實現決策數據的體系化、指標化和模型化。

3、決策指標體系建設根據某電建集團提供數據的內容和主要特徵,將決策指標體系的指標分為運營指標、經營指標、整體指標、市場指標、履約指標五類一級指標。每類一級指標又分別由若干個二級指標組成。

4、建設決策支持系統通過億信BI工具,基於報表採集的數據和相關信息系統積累的數據, 初步構建管理駕駛艙,滿足面向公司決策層和部門領導的數據分析,可視化圖表化輔助領導管理決策,並集成電建通APP應用,實現決策移動化。

5、搭建自助式BI通過豌豆BI工具搭建自助式 BI。為市場營銷、建設管理、資產運營、財務管理等部門有自助探索數據分析的業務人員提供自助式可視化分析工具。

價值體現 在合作中,億信華辰根據當前數據分析應用的訴求,幫助該電建集團建設決策整體指標、市場指標、履約指標、運營指標五個模塊,提供了從數據採集、數據匯總到指標口徑定義、指標建模、指標數據落地和數據可視化分析於一體的完整的解決方案。決策管理平台以業務分析平台為基礎,以更核心的指標、更直觀的展現方式實現數據的分析與監控,支撐領導層的管理決策。主要包括管理駕駛艙、項目看板專題、市場專題、經營專題、履約專題、運營專題等場景。使數據資源得到充分利用,最大程度的發揮數據價值。

⑤ 大數據的應用領域有哪些

1.了解和定位客戶

這是大數據目前最廣為人知的應用領域。很多企業熱衷於社交媒體數據、瀏覽器日誌、文本挖掘等各類數據集,通過大數據技術創建預測模型,從而更全面地了解客戶以及他們的行為、喜好。

利用大數據,美國零售商Target公司甚至能推測出客戶何時會有Baby;電信公司可以更好地預測客戶流失;沃爾瑪可以更准確的預測產品銷售情況;汽車保險公司能更真實的了解客戶實際駕駛情況。

滑雪場利用大數據來追蹤和鎖定客戶。如果你是一名狂熱的滑雪者,想像一下,你會收到最喜歡的度假勝地的邀請;或者收到定製化服務的簡訊提醒;或者告知你最合適的滑行線路。。。。。。同時提供互動平台(網站、手機APP)記錄每天的數據——多少次滑坡,多少次翻越等等,在社交媒體上分享這些信息,與家人和朋友相互評比和競爭。

除此之外,政府競選活動也引入了大數據分析技術。一些人認為,奧巴馬在2012年總統大選中獲勝,歸功於他們團隊的大數據分析能力更加出眾。

2.

改善醫療保健和公共衛生

大數據分析的能力可以在幾分鍾內解碼整個DNA序列,有助於我們找到新的治療方法,更好地理解和預測疾病模式。試想一下,當來自所有智能手錶等可穿戴設備的數據,都可以應用於數百萬人及其各種疾病時,未來的臨床試驗將不再局限於小樣本,而是包括所有人!

蘋果公司的一款健康APP ResearchKit有效將手機變成醫學研究設備。通過收集用戶的相關數據,可以追蹤你一天走了多少步,或者提示你化療後感覺如何,帕金森病進展如何等問題。研究人員希望這一過程變得更容易、更自動化,吸引更多的參與者,並提高數據的准確度。

大數據技術也開始用於監測早產兒和患病嬰兒的身體狀況。通過記錄和分析每個嬰兒的每一次心跳和呼吸模式,提前24小時預測出身體感染的症狀,從而及早干預,拯救那些脆弱的隨時可能生命危險的嬰兒。

更重要的是,大數據分析有助於我們監測和預測流行性或傳染性疾病的暴發時期,可以將醫療記錄的數據與有些社交媒體的數據結合起來分析。比如,谷歌基於搜索流量預測流感爆發,盡管該預測模型在2014年並未奏效——因為你搜索「流感症狀」並不意味著真正生病了,但是這種大數據分析的影響力越來越為人所知。

3.提供個性化服務

大數據不僅適用於公司和政府,也適用於我們每個人,比如從智能手錶或智能手環等可穿戴設備採集的數據中獲益。Jawbone的智能手環可以分析人們的卡路里消耗、活動量和睡眠質量等。Jawbone公司已經能夠收集長達60年的睡眠數據,從中分析出一些獨到的見解反饋給每個用戶。從中受益的還有網路平台「尋找真愛」,大多數婚戀網站都使用大數據分析工具和演算法為用戶匹配最合適的對象。

4.

了解和優化業務流程

大數據也越來越多地應用於優化業務流程,比如供應鏈或配送路徑優化。通過定位和識別系統來跟蹤貨物或運輸車輛,並根據實時交通路況數據優化運輸路線。

人力資源業務流程也在使用大數據進行優化。Sociometric Solutions公司通過在員工工牌里植入感測器,檢測其工作場所及社交活動——員工在哪些工作場所走動,與誰交談,甚至交流時的語氣如何。美國銀行在使用中發現呼叫中心表現最好的員工——他們制定了小組輪流休息制度,平均業績提高了23%。

如果在手機、鑰匙、眼鏡等隨身物品上粘貼RFID標簽,萬一不小心丟失就能迅速定位它們。假想一下未來可能創造出貼在任何東西上的智能標簽。它們能告訴你的不僅是物體在哪裡,還可以反饋溫度,濕度,運動狀態等等。這將打開一個全新的大數據時代,「大數據」領域尋求共性的信息和模式,那麼孕育其中的「小數據」著重關注單個產品。


5.

改善城市和國家建設

大數據被用於改善我們城市和國家的方方面面。目前很多大城市致力於構建智慧交通。車輛、行人、道路基礎設施、公共服務場所都被整合在智慧交通網路中,以提升資源運用的效率,優化城市管理和服務。

加州長灘市正在使用智能水表實時檢測非法用水,幫助一些房主減少80%的用水量。洛杉磯利用磁性道路感測器和交通攝像頭的數據來控制交通燈信號,從而優化城市的交通流量。據統計目前已經控制了全市4500個交通燈,將交通擁堵狀況減少了約16%。


6.提升科學研究

大數據帶來的無限可能性正在改變科學研究。歐洲核子研究中心(CERN)在全球遍布了150個數據中心,有65,000個處理器,能同時分析30pb的數據量,這樣的計算能力影響著很多領域的科學研究。比如政府需要的人口普查數據、自然災害數據等,變的更容易獲取和分析,從而為我們的健康和社會發展創造更多的價值。

7.提升機械設備性能

大數據使機械設備更加智能化、自動化。例如,豐田普銳斯配備了攝像頭、全球定位系統以及強大的計算機和感測器,在無人干預的條件下實現自動駕駛。Xcel Energy在科羅拉多州啟動了「智能電網」的首批測試,在用戶家中安裝智能電表,然後登錄網站就可實時查看用電情況。「智能電網」還能夠預測使用情況,以便電力公司為未來的基礎設施需求進行規劃,並防止出現電力耗盡的情況。在愛爾蘭,雜貨連鎖店Tescos的倉庫員工佩戴專用臂帶,追蹤貨架上的商品分配,甚至預測一項任務的完成時間。

8.強化安全和執法能力

大數據在改善安全和執法方面得到了廣泛應用。美國國家安全局(NSA)利用大數據技術,檢測和防止網路攻擊(挫敗恐怖分子的陰謀)。警察運用大數據來抓捕罪犯,預測犯罪活動。信用卡公司使用大數據來檢測欺詐交易等等。

2014年2月,芝加哥警察局對大數據生成的「名單」——有可能犯罪的人員,進行通告和探訪,目的是提前預防犯罪。

9.

提高體育運動技能

如今大多數頂尖的體育賽事都採用了大數據分析技術。用於網球比賽的IBM SlamTracker工具,通過視頻分析跟蹤足球落點或者棒球比賽中每個球員的表現。許多優秀的運動隊也在訓練之外跟蹤運動員的營養和睡眠情況。NFL開發了專門的應用平台,幫助所有球隊根據球場上的草地狀況、天氣狀況、以及學習期間球員的個人表現做出最佳決策,以減少球員不必要的受傷。

還有一件非常酷的事情是智能瑜伽墊:嵌入在瑜伽墊中的感測器能對你的姿勢進行反饋,為你的練習打分,甚至指導你在家如何練習。

10.金融交易

大數據在金融交易領域應用也比較廣泛。大多數股票交易都是通過一定的演算法模型進行決策的,如今這些演算法的輸入會考慮來自社交媒體、新聞網路的數據,以便更全面的做出買賣決策。同時根據客戶的需求和願望,這些演算法模型也會隨著市場的變化而變化。

更多精彩:14_spark體系之分布式計算課程Spark 集群搭建+S

閱讀全文

與傳統行業數據分析有哪些業務場景相關的資料

熱點內容
哪些產品必須有s標 瀏覽:462
江中眼罩怎麼代理 瀏覽:219
哪裡可以看程序員那麼可愛第19集 瀏覽:307
深圳安保市場怎麼樣 瀏覽:234
回收小程序如何開發 瀏覽:629
組裝機程序亂了怎麼解決 瀏覽:523
西北哪個批發市場好 瀏覽:251
代理加盟乾果店需要什麼 瀏覽:658
蘇州塑料市場有哪些 瀏覽:439
如何看待招標代理服務零元中標 瀏覽:691
信息管理系統有哪些公司 瀏覽:832
農行付款信息填錯了如何撤銷 瀏覽:62
台達plc如何寫程序控制步進電機 瀏覽:973
飢荒用什麼和隱士交易 瀏覽:472
訊問筆錄上的訊問程序填什麼 瀏覽:75
為什麼各種商家都來中國開拓市場 瀏覽:852
廣統表裡面的技術交底在哪裡 瀏覽:204
蘋果怎麼能不共享手機號信息 瀏覽:649
程序員不想學什麼技術 瀏覽:249
妹子說不要發信息了什麼意思 瀏覽:154