❶ 面板數據模型估計一般要做哪些步驟
步驟一:分析數據的平穩性(單位根檢驗)。
按照正規程序,面板數據模型在回歸前需檢驗數據的平穩性。李子奈曾指出,一些非平穩的經濟時間序列往往表現出共同的變化趨勢,而這些序列間本身不一定有直接的關聯,此時,對這些數據進行回歸,盡管有較高的R平方,但其結果是沒有任何實際意義的。
步驟二:協整檢驗或模型修正。
情況一:如果基於單位根檢驗的結果發現變數之間是同階單整的,那麼我們可以進行協整檢驗。協整檢驗是考察變數間長期均衡關系的方法。
所謂的協整是指若兩個或多個非平穩的變數序列,其某個線性組合後的序列呈平穩性。此時我們稱這些變數序列間有協整關系存在。因此協整的要求或前提是同階單整。
步驟三:面板模型的選擇與回歸。
面板數據模型的選擇通常有三種形式:
一種是混合估計模型(Pooled Regression Model)。如果從時間上看,不同個體之間不存在顯著性差異;從截面上看,不同截面之間也不存在顯著性差異,那麼就可以直接把面板數據混合在一起用普通最小二乘法(OLS)估計參數。
一種是固定效應模型(Fixed Effects Regression Model)。如果對於不同的截面或不同的時間序列,模型的截距不同,則可以採用在模型中添加虛擬變數的方法估計回歸參數。
一種是隨機效應模型。
面板數據模型可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5種方法進行面板單位根檢驗。
其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分別指Levin, Lin & Chu t* 統計量、Breitung t 統計量、lm Pesaran & Shin W 統計量。
ADF- Fisher Chi-square統計量、PP-Fisher Chi-square統計量、Hadri Z統計量,並且Levin, Lin & Chu t* 統計量、Breitung t統計量的原假設為存在普通的單位根過程。
lm Pesaran & Shin W 統計量、ADF- Fisher Chi-square統計量、PP-Fisher Chi-square統計量的原假設為存在有效的單位根過程, Hadri Z統計量的檢驗原假設為不存在普通的單位根過程。
❷ 面板數據要不要進行內生性檢驗、穩健性檢驗
面板數據回歸後,穩健性檢驗一定要做。
穩健性檢驗的方法:從數據出發,根據不同的標准調整分類,檢驗結果是否依然顯著;從變數出發,從其他的變數替換,如:公司size可以用totalassets衡量,也可以用totalsales衡量從計量方法出發,可以用OLS,FIXEFFECT,GMM等來回歸,看結果是否依然robust。
穩健性檢驗
考察的是評價方法和指標解釋能力的強壯性,也就是當改變某些參數時,評價方法和指標是否仍然對評價結果保持一個比較一致、穩定的解釋。通俗些,就是改變某個特定的參數,進行重復的實驗,來觀察實證結果是否隨著參數設定的改變而發生變化,如果改變參數設定以後,結果發現符號和顯著性發生了改變,說明不是穩健性的,需要尋找問題的所在。
以上內容參考:網路-穩健性檢驗
❸ eviews做面板數據是否要進行模型檢驗
面板數據與時間序列有本質的不同。面板數據一般存在的是異方差,在做模型的時候需要進行異方差檢驗。
❹ 面板數據為什麼要做異方差檢驗
因為異方差存在,說明模型中無法觀測到的因素對解釋變數有較大影響。
實現同方差是為了保證回歸參數估計量具有良好的統計性質,經典線性回歸模型的一個重要假定:總體回歸函數中的隨機誤差項滿足同方差性,即它們都有相同的方差。如果這一假定不滿足,即:隨機誤差項具有不同的方差,則稱線性回歸模型存在異方差性。
(4)面板數據都要做什麼檢驗擴展閱讀:
面板數據可以克服時間序列分析受多重共線性的困擾,能夠提供更多的信息、更多的變化、更少共線性、更多的自由度和更高的估計效率,而面板數據的單位根檢驗和協整分析是當前最前沿的領域之一。
面板數據的單位根檢驗的方法主要有Levin,Lin and CHU(2002)提出的LLC檢驗方法。Im,Pesearn,Shin(2003)提出的IPS檢驗,Maddala和Wu(1999),Choi(2001)提出的ADF和PP檢驗等。
面板數據的協整檢驗的方法主要有Pedroni(1999,2004)和Kao(1999)提出的檢驗方法,這兩種檢驗方法的原假設均為不存在協整關系,從面板數據中得到殘差統計量進行檢驗。
Luciano(2003)中運用Monte Carlo模擬對協整檢驗的幾種方法進行比較,說明在T較小(大)時,Kao檢驗比Pedroni檢驗更高(低)的功效。