① 數據分析方法有哪些
常用的數據分析方法有:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。
1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。
3、相關分析(Correlation Analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,?,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。
想了解更多關於數據分析的信息,推薦到CDA數據認證中心看看,CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。
② 數據分析常見類型有哪些
1. 描述性分析
通過描述性分析這一手段,我們可以分析和描述數據的特徵。這是一個處理信息匯總的好方法。描述性分析與視覺分析相結合,為我們提供了全面的數據結構。
在描述性分析中,我們處理過去的數據以得出結論,並以儀錶板的形式展現出來。在企業中,描述性分析多用於確定關鍵績效指標或KPI以評估企業績效。
2. 預測分析
藉助預測分析,我們可以確定未來的結果。基於對歷史數據的分析,我們甚至可以預測未來。它利用描述性分析來生成有關未來的預測,藉助技術進步和機器學習,能夠獲得有關未來的預測性見解。
預測分析是一個復雜的領域,需要大量數據來熟練地執行預測模型及其調整從而獲得較為准確的預測,這需要我們精通機器學習並開發有效的模型。
3. 診斷分析
有時,企業需要對數據的性質進行批判性思考,並深入了解描述性分析。為了找到數據中的問題,我們需要對一些分析進行診斷。
4. 規范分析
規范分析結合了以上所有分析技術的見解嗎,它被稱為數據分析的最終領域,規范分析使公司可以根據這些數據結論制定相關決策。
規范分析需要大量使用人工智慧,以方便公司做出謹慎的業務決策,像Facebook、Netflix、Amazon和Google之類的大公司正在使用規范分析來制定關鍵業務決策。
③ 數據統計分析方法有哪些
1、分解主題分析
所謂分解主題分析,是指對於不同分析要求,我們可以初步分為營銷主題、財務主題、靈活主題等,然後將這些大的主題逐步拆解為不同小的方面來進行分析。
2、鑽取分析
所謂鑽取分析,是指改變維的層次,變換分析的粒度。按照方向方式分為:向上和向下鑽取。向上鑽取是在某一維上將低層次的細節數據概括到高層次的匯總數據,或者減少維數;是自動生成匯總行的分析方法。向下鑽取是從匯總數據深入到細節數據進行觀察或增加新維的分析方法。
3、常規比較分析
所謂常規比較分析,是指一般比較常見的對比分析方法,例如有時間趨勢分析、構成分析、同類比較分析、多指標分析、相關性分析、分組分析、象限分析等。
4、大型管理模型分析
所謂大型管理模型分析,是指依據各種成熟的、經過實踐論證的大型管理模型對問題進行分析的方法。比較常見的大型管理模型分析包括RCV模型、阿米巴經營、品類管理分析等。
5、財務和因子分析
所謂財務和因子分析,主要是指因子分析法在財務信息分析上的廣泛應用。因子分析的概念起源於20世紀初的關於智力測試的統計分析,以最少的信息丟失為前提,將眾多的原有變數綜合成較少的幾個綜合指標,既能大大減少參與數據建模的變數個數,同時也不會造成信息的大量丟失,達到有效的降維。比較常用的財務和因子分析法有杜邦分析法、EVA分析、財務指標、財務比率、坪效公式、品類公式、流量公式等。
6、專題大數據分析
所謂專題大數據分析,是指對特定的一些規模巨大的數據進行分析。大數據常用來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。常見特徵是數據量大、類型繁多、價值密度低、速度快、時效低。比較常見的專題大數據分析有:市場購物籃分析、重力模型、推薦演算法、價格敏感度分析、客戶分組分析等分析方法。
④ 統計學中常用的數據分析方法有哪些
1、描述統計
描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析、離中趨勢分析和相關分析三大部分。
2、假設檢驗
參數檢驗:參數檢驗是在已知總體分布的條件下(一般要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
3、信服分析
介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。
信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。
⑤ 數據分析的基本方面有哪些
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、語義引擎
大數據分析廣泛應用於網路數據挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現更好的用戶體驗和廣告匹配。
5、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
⑥ 數據分析需要掌握哪些知識
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。數據可視化數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
⑦ 常用的數據分析技術有哪些
1. Analytic Visualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
3. Predictive Analytic Capabilities(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎)
由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5. Data Quality and Master Data Management(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
⑧ 數據分析包括哪些內容
1.數據獲取
數據獲取看似簡單,但是需要把握對問題的商業理解,轉化成數據問題來解決,直白點講就是需要哪些數據,從哪些角度來分析,界定問題後,再進行數據採集。此環節,需要數據分析師具備結構化的邏輯思維。
2.數據處理
數據的處理需要掌握有效率的工具:Excel基礎、常用函數和公式、數據透視表、VBA程序開發等式必備的;其次是Oracle和SQL sever,這是企業大數據分析不可缺少的技能;還有Hadoop之類的分布式資料庫,也要掌握。
3.分析數據
分析數據往往需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。SPSS、SAS、Python、R等工具,多多益善。
4.數據呈現
可視化工具,有開源的Tableau可用,也有一些商業BI軟體,根據實際情況掌握即可。
⑨ 大數據分析有哪些基本方向
1.可視化剖析
不管是對數據剖析專家仍是普通用戶,數據可視化是數據剖析東西最根本的要求。可視化能夠直觀的展現數據,讓數據自己說話,讓觀眾聽到成果。
2.數據發掘演算法
可視化是給人看的,數據發掘便是給機器看的。集群、切割、孤立點剖析還有其他的演算法讓咱們深入數據內部,發掘價值。這些演算法不只要處理大數據的量,也要處理大數據的速度。
3.猜測性剖析才能
數據發掘能夠讓剖析員更好的理解數據,而猜測性剖析能夠讓剖析員根據可視化剖析和數據發掘的成果做出一些猜測性的判別。
4.語義引擎
咱們知道由於非結構化數據的多樣性帶來了數據剖析的新的應戰,咱們需求一系列的東西去解析,提取,剖析數據。語義引擎需求被設計成能夠從“文檔”中智能提取信息。
5.數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。經過標准化的流程和東西對數據進行處理能夠保證一個預先界說好的高質量的剖析成果。
6.數據存儲,數據倉庫
數據倉庫是為了便於多維剖析和多角度展現數據按特定形式進行存儲所建立起來的聯系型資料庫。在商業智能系統的設計中,數據倉庫的構建是關鍵,是商業智能系統的根底,為商業智能系統供給數據抽取、轉換和載入(ETL),並按主題對數據進行查詢和拜訪,為聯機數據剖析和數據發掘供給數據平台。
關於大數據分析有哪些基本方向,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。