導航:首頁 > 數據處理 > 醫學影像ai需要做哪些數據准備

醫學影像ai需要做哪些數據准備

發布時間:2024-05-09 05:56:00

『壹』 AI賦能醫療的背後,臨床大數據該如何「跑起來」

19世紀,英國流行病學家、麻醉學家約翰·斯諾運用近代早期的數據科學,記錄每天的死亡人數和傷患 人數,並將死亡者的地址標注在地圖上,繪制了倫敦霍亂爆發的「群聚」地圖,霍亂在過去被普遍認為是由有害空氣導致,斯諾通過調查數據的匯總,確定了霍亂的元兇是被污 染的公共水井,並同時奠定了疾病細菌理論的基礎,這算是大數據運用的早期雛形之一。

斯諾大概不會想到,在近兩百年後,大數據的應用早已不再是偶然,隨著醫療衛生信息化的迅速發展,其通過與AI的結合在生物醫葯研發、疾病管理旁余、公共衛生和 健康 管理等方面的滲透已逐漸常態化,但問題也相應地隨之凸顯。

信息孤島仍存

近兩年,關於醫療大 健康 數據的政策頻出,從頂層設計、具體規劃指導、數 據隱私和安全、數據管理等多個方面提出了相關的指導意見。

2016年6月,國務院辦公廳下發《關於促進和規范 健康 醫療大數據應用發展的指導意見》指出,鼓勵各類醫療衛生機構推進 健康 醫療大數據採集、存儲,加強應用支撐和運維技術保障,打通數據資源共享通道,加快建設和完善以居民電子 健康 檔案、電子病歷、電子處方等為核亂握心的基礎資料庫

2018年9月, 國家衛生 健康 委印發《國家 健康 醫療大數據標准、安全和服務管理辦法(試行)》,對醫療 健康 大數據行業從規范管理和開發利用的角度出發進行規范。《辦法》從醫療大數據標准、醫 療大數據安全、嘩啟慶醫療大數據服務、醫療大數據監督四個方面提出指導意見,直擊目前醫療大數 據領域的痛點,未來對數據的統籌標准管理、落實安全責任、規范數據服務和管理具有重要意義。

然而,即使有專項政策的支持,但都限於宏觀層面,相較於其他成熟領域而言, 健康 醫療大數據領域的法律法規依然存在明顯的滯後性,缺乏比較全面、細致、明確的指引和規則,使其的發展受到嚴重製約。雖然現階段,已有很多企業在醫療大數據領域進行深耕布局,但受制於市場准入和產業政策的不確定性,目前尚在摸著石頭過河,市場熱情和活力並未得到充分、有效地釋放。

復旦大學上海醫學院生物醫學研究院教授劉雷認為,正是醫療大數據政策的不明朗,標準的不統一,也直接導致了各個系統之間難以進行數據交換和信息共享,產生了大量的「信息孤島」。舉個簡單的例子,患者在A醫院拍的片子到了B醫院卻不認,B醫院的醫生想要了解患者的信息則需要從零開始,患者曾在A醫院做的檢查需要在B醫院重新再來一輪,「想要打通醫療機構間臨床大數據資源的共享通道,至少在現階段是一件挺困難的事情。」劉雷表示。

相似的困擾也發生在相距超過一萬公里之外的美國,華盛頓大學醫學院信息研究所所長Philip Paynes在接受醫谷采訪時表示:臨床大數據間的彼此「孤立」給國家醫保機構、患者和醫院都帶來了負擔,實現大數據間的互通互用,是全世界范圍內都在著力解決的問題。

作為兩所頂尖大學的知名研究學者,劉雷和Paynes想在臨床大數據領域做一些努力和嘗試。

兩人共有的想法迅速得到了學校層面的大力支持,2019年7月26-29日,由復旦大學醫學院和聖路易斯華盛頓大學醫學院聯合授課的「應用臨床信息學和數據分析研修班」進行了第一次開班。

復旦大學生物醫學研究院教授、復旦大學大數據研究院醫學信息與醫學影像智能診斷研究所所長劉雷授課

據劉雷介紹,此次研修班得到了業界人士的積極響應,在第一屆學員中,來自醫院、醫療企業、高校各佔了三分之一,「就是純粹地想把對臨床大數據分析和感興趣的業界人士聚集在一起,通過共有的努力,能把臨床大數據的有效運用更推進一步。」

聖路易斯華盛頓大學醫學院信息學研究所主任Philip Paynes授課

「希望通過這種國際化的合作,能讓臨床大數據在醫療機構間甚至跨國間真正地』跑』起來多一種可能性。」 Paynes說道。

各自所做的 探索

而在這種可能性之前,劉雷和Paynes各自所在的研究機構均已做了大量的工作。

據悉,劉雷所在的復旦大學上海醫學院生物醫學研究作為一家致力於創建「中國第一、世界一流的生物醫學交叉學術研究機構」,已經在生物醫學交叉學科領域形成「代謝與腫瘤的分子細胞生物學」、「醫學表觀遺傳學」、「系統生物醫學」三個優勢方向,並正在努力拓展轉化醫學研究和精準醫學研究,包括老年醫學、腫瘤和心血管疾病、出生缺陷、靶點結構與活性小分子、組學和大數據、生物治療與干預,形成新的交叉學科生長點和下游技術。

另悉,目前,復旦大學上海醫學院生物醫學研究還在申請一個超算中心的建設項目,以該項目來支撐生物學大數據的研究,「復旦大學有包括中山醫院、華山醫院、仁濟醫院等17所附屬教學醫院,這其中有一些醫院也在做自身的臨床大數據中心,從研究所層面,希望能夠給他們提供一些人才培養和技術研究的有力支持。」劉雷表示。

Paynes所在的華盛頓大學醫學院信息研究所則是華盛頓大學所有大數據計劃的中心, 「我們擁有世界上最好的基因組研究所和最具生產力和影響力的基礎科學研究企業」,在醫學信息技術方面的能力非常強,但在大數據的整合方面還有待加強。」而這也成了Paynes擔任華盛頓大學醫學院信息研究所第一屆所長之後重點開展的工作。

自Paynes上任後,首先將研究所與旗下15所附屬教學醫院進行了打通聯動,從臨床大數據的收集到整合再到挖掘,最後到應用,鋪設了一條全鏈式的臨床大數據之路。

在Paynes看來:研究所下屬的15所教學醫院簡直就是大數據來源的寶藏,這15家在全美醫療機構中排名比較靠前的醫院每天產生大量的臨床數據,依託這些已有的臨床數據的回顧性研究,是分析研究疾病最基本、最重要的研究方法之一,通過將這些海量的臨床數據進行統計分析,分析的結果又將反過來為醫生臨床診療全過程提供疾病共享的發病及治療總體情況信息,幫助醫生科學決策,實現精準醫療。

「我們的夢想是不僅僅是利用臨床大數據幫助患者,而是希望這些臨床大數能滲透到他們的生活和工作,甚至休閑 娛樂 ,通過大數據的分析能夠把他們患病的概率降到最低,讓人們能一直保持 健康 的狀態。」 Paynes對醫谷展望道。

未來發展構想

在劉雷、Paynes和其團隊所做的大量臨床數據整合的工作中,由於各自旗下擁有多所強大的教學醫院,數據的來源已不是問題,然而,擺在他們面前更為現實的問題有兩個,一是要解決多模態臨床大數據的選擇問題。臨床大數據來源多樣,是一種多模態數據,其包括有結構化很好的數據,比如化驗單、處方;還有一些半結構化的數據,比如住院小結、出院小結;還有完全無結構化的數據,比如醫療影像;還有像基因測序這樣的組學數據;以及時間序列數據,比如ICU里會看到患者插著各種各樣的儀器測量血壓心率脈搏等各種流數據。

怎樣從這些不同模態的數據裡面選出需要的數據,劉雷表示他們,他們需要的更多的是結構化很好的臨床數據,為了得到這部分數據,會通過一定的技術平台會對數據進行一定的清洗,從中選取高質量的有效數據。

這個問題解決後,還有一個臨床大數據一直以來繞不開的一個爭議--安全和隱私問題。

對此,劉雷表示,依託現有的技術,目前收集的臨床大數據基本都能做到「不出院」,這在一定程度程度上很好地保證了數據的安全性。Paynes也指出,美國對於醫療大數據有很嚴密的保護法規,患者的關鍵隱私數據,如姓名、住址、電話、身份證號等進入數據管理的時候必須要打馬賽克,同時對數據進行強加密,數據即使被泄露也是不可解密的,對所有的數據訪問(誰什麼時間能訪問什麼)都要有一套嚴格的訪問控制,通過這樣的方式來保證數據安全性。

當技術的問題已不再是問題, 這意味著臨床大數據和AI的結合會變得更為完美,因此,劉雷和Paynes更多希望監管層能在未來對基於大數據訓練的AI能進行更多關於有效性和安全性方面的評估,也就是審批准入要做到嚴,同時,還要加強公眾對醫療AI的認知,不管AI發展到多麼先進的程度,總歸存在一定的局限性,它永遠不可能替代醫生,只能是醫生的一種輔助診斷工具。

盡管還有一段路要走,但對於臨床大數據和AI的搭配,劉雷和Paynes都充滿信心,至少在他們現有開展工作的規劃里,「應用臨床信息學和數據分析研修班」能最終逐步發展為一個碩士人才培養項目,為臨床大數據和人工智慧培養更多專業人才。同時,基於兩個研究機構現階段開展的工作,有天能實現跨國界的匯聚統一,可以把所有的臨床大數據統一在同一個模型上,建立一個類似於聯盟數據一樣的聯合體,這對於數據的整合和應用就會變得游刃有餘。

【凡本網註明來源非大 健康 Pai的作品,均轉載自其它媒體,目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責。】

『貳』 浜哄伐鏅鴻兘鍦ㄥ尰瀛﹀獎鍍忛嗗煙鐨勫簲鐢

浜哄伐鏅鴻兘鍦ㄥ尰瀛﹀獎鍍忛嗗煙鐨勫簲鐢ㄦ湁鐤劇棶絳涙煡銆佺棶鐏跺嬀鐢匯佽剰鍣ㄤ笁緇存垚鍍忋

3銆佽剰鍣ㄤ笁緇存垚鍍忥細

鑴忓櫒涓夌淮鎴愬儚鏄浜哄伐鏅鴻兘浠ユ牳紓佸叡鎸銆丆T絳夊尰瀛﹀獎鍍忔暟鎹涓哄熀紜錛屽圭洰鏍囪剰鍣ㄥ畾浣嶅垎鍓詫紝鍦ㄧ數鑴戜笂鏄劇ず鎮h呯殑鍐呴儴鎯呭喌銆傚皢鐥呬漢鐨勬牳紓佸叡鎸銆丆T絳夌棶鎯呭獎鍍忔暟鎹杈撳叆錛屽湪鐢佃剳涓婃樉紺烘偅鑰呯殑鍐呴儴鎯呭喌銆傚尰鐢熸墜涓鐨勬帰閽堟寚鍚戝摢閲岋紝緋葷粺瀹炴椂鏇存柊鏄劇ず錛岃╁尰鐢熷圭棶浜虹殑瑙e墫浣嶇疆涓鐩浜嗙劧銆

浣垮栫戞墜鏈鏇村揩閫熴佹洿綺劇『銆佹洿瀹夊叏銆傝嚜鍔ㄩ噸鏋勫櫒瀹樼湡瀹炵殑3D妯″瀷錛屽疄鐜板尰鐢熷彲閫氳繃涓撶敤璁炬柦錛屽湪澧炲己鐜板疄鐨勮櫄鎷熺┖闂撮噷鍏ㄦ柟浣嶇洿鎺ヨ傜湅鍒版偅鑰呯湡瀹炰漢浣撶粨鏋勭殑瑙e墫緇嗚妭錛屽苟鍙閫氳繃鎵嬪娍鍜岃闊蟲搷浣滐紝瀹炴椂榪涜屽櫒瀹樺拰鐥呭彉鐨勭珛浣撳嚑浣曞垎鏋愶紝綺劇『嫻嬮噺鐩鏍囩粨鏋勭殑鍖轟綅銆佷綋縐銆佸緞綰褲佽窛紱葷瓑鍙傛暟銆

閱讀全文

與醫學影像ai需要做哪些數據准備相關的資料

熱點內容
外國怎麼叫代理記賬 瀏覽:52
什麼是市場文化 瀏覽:544
如何破滅程序員夢 瀏覽:132
別人質疑自己的產品設計時怎麼辦 瀏覽:551
投資水果市場商鋪怎麼樣 瀏覽:953
網頁的信息都存在哪裡了 瀏覽:108
醫學外文獻哪個資料庫好 瀏覽:72
辦的副卡為什麼開不了數據 瀏覽:271
新加坡雅典娜交易所是哪個國家的 瀏覽:199
碳交易所上市為什麼暫緩 瀏覽:424
新三板是在哪個交易所上市 瀏覽:414
汽車共享產品怎麼樣 瀏覽:806
有機會學什麼技術 瀏覽:572
華為如何投訴代理商 瀏覽:548
如何關閉電腦右鍵顯示的應用程序 瀏覽:79
中興通訊技術培訓講師怎麼樣 瀏覽:889
出租房信息有哪些渠道 瀏覽:659
數據電表怎麼測量電壓 瀏覽:851
如何辨別做核酸信息真假 瀏覽:102
新型干法水泥生產的核心技術是什麼 瀏覽:635