㈠ 大數據測試需要學什麼
首先是基礎階段。這一階段包括:關系型資料庫原理、LINUX操作系統原理及應用。在掌握了這些基礎知識後,會安排這些基礎課程的進階課程,即:數據結構與演算法、MYSQL資料庫應用及開發、SHELL腳本編程。在掌握了這些內容之後,大數據基礎學習階段才算是完成了。
接下來是大數據專業學習的第二階段:大數據理論及核心技術。第二階段也被分為了基礎和進階兩部分,先理解基礎知識,再進一步對知識內容做深入的了解和實踐。基礎部分包括:布式存儲技術原理與應用、分布式計算技術、HADOOP集群搭建、運維;進階內容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源碼分析、HIVE、HBASE、Mongodb、HADOOP項目實戰。
完成了這部分內容的學習,學員們就已經掌握了大數據專業大部分的知識,並具有了一定的項目經驗。但為了學員們在大數據專業有更好的發展,所學知識能更廣泛地應用到大數據相關的各個崗位,有個更長遠的發展前景。
第三階段叫做數據分析挖掘及海量數據高級處理技術。基礎部分有:PYTHON語言、機器學習演算法、FLUME+KAFKA;進階部分有:機器學習演算法庫應用、實時分析計算框架、SPARK技術、PYTHON高級語言應用、分布式爬蟲與反爬蟲技術、實時分析項目實戰、機器學習演算法項目實戰。
㈡ 大數據分析一般用什麼工具分析
在大數據處理分析過程中常用的六大工具:
1、Hadoop
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
2、HPCC
HPCC,High Performance Computing and Communications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
3、Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。
4、Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google's Dremel.
據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。
5、RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
6、Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。
㈢ 怎樣提升自己的大數據測試經驗
業務篇
1.業務為核心,數據為王
· 了解整個產業鏈的結構
· 制定好業務的發展規劃
· 了解衡量的核心指標
有了數據必須和業務結合才有效果。
需要懂業務的整體概況,摸清楚所在產業鏈的整個結構,對行業的上游和下游的經營情況有大致的了解。然後根據業務當前的需要,指定發展計劃,從而歸類出需要整理的數據。最後一步詳細的列出數據核心指標(KPI),並且對幾個核心指標進行更細致的拆解,當然具體結合你的業務屬性來處理,找出那些對指標影響幅度較大的影響因子。前期資料的收集以及業務現況的全面掌握非常關鍵。
2.思考指標現狀,發現多維規律
· 熟悉產品框架,全面定義每個指標的運營現狀對
· 比同行業指標,挖掘隱藏的提升空間
· 拆解關鍵指標,合理設置運營方法來觀察效果
· 爭對核心用戶,單獨進行產品用研與需求挖掘
業務的分析大多是定性的,需要培養一種客觀的感覺意識。定性的分析則需要藉助技術、工具、機器。而感覺的培養,由於每個人的思維、感知都不同,只能把控大體的方向,很多數據元素之間的關系還是需要通過數據可視化技術來實現。
3.規律驗證,經驗總結
發現了規律之後不能立刻上線,需要在測試機上對模型進行驗證。
技能篇
1.Excel是否精鑽?
除了常用的Excel函數(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel圖表(餅圖、線圖、柱形圖、雷達圖等)和簡單分析技能也是經常用的,可以幫助你快速分析業務走勢和異常情況;另外,Excel裡面的函數結合透視表以及VBA功能是完善報表開發的利器,讓你一鍵輕松搞定報表。
2.你需要更懂資料庫
常用的資料庫如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL語句的熟練使用,對於資料庫的存儲讀取過程也要熟練掌握。在對於大數據量處理時,如何想辦法加快程序的運行速度、減少網路流量、提高資料庫的安全性是非常有必要的。
3.掌握數據整理、可視化和報表製作
數據整理,是將原始數據轉換成方便實用的格式,實用工具有Excel、R、Python等工具。數據可視化,是創建和研究數據的視覺表現,方便業務方快速分析數據並定位具體問題,實用工具有Tableau、FineBI、Qlikview.
如果常用excel,那需要用PPT展示,這項技能也需要琢磨透。如果用tableau、FineBI之類的工具做數據可視化,FineBI有推送查看功能,也就是在企業上下建立一套系統,通過許可權的分配讓不同的人看到許可權范圍內的報表。
4.多學幾項技能
大多數據分析師都是從計算機、數學、統計這些專業而來的,也就意味著數學知識是重要基礎。尤其是統計學,更是數據分析師的基本功,從數據採集、抽樣到具體分析時的驗證探索和預測都要用到統計學。
現在社會心理學也逐漸囊括到數據分析師的能力體系中來了,尤其是從事互聯網產品運營的同學,需要了解用戶的行為動向,分析背後的動機。把握了整體方向後,數據分析的過程也就更容易。